import argparse import json import re import jsonlines from fraction import Fraction from vllm import LLM, SamplingParams import sys MAX_INT = sys.maxsize def is_number(s): try: float(s) return True except ValueError: pass try: import unicodedata unicodedata.numeric(s) return True except (TypeError, ValueError): pass return False def extract_answer_number(completion): text = completion.split('The answer is: ') if len(text) > 1: extract_ans = text[-1].strip() match = re.search(r'[\-+]?\d*[\.,/]?\d+', extract_ans) if match: if '/' in match.group(): denominator = match.group().split('/')[1] numerator = match.group().split('/')[0] if is_number(denominator) == True and is_number(numerator) == True: if denominator == '0': return round(float(numerator.replace(',', ''))) else: frac = Fraction(match.group().replace(',', '')) num_numerator = frac.numerator num_denominator = frac.denominator return round(float(num_numerator / num_denominator)) else: return None else: if float(match.group().replace(',', '')) == float('inf'): return None return round(float(match.group().replace(',', ''))) else: return None else: return None def batch_data(data_list, batch_size=1): n = len(data_list) // batch_size batch_data = [] for i in range(n-1): start = i * batch_size end = (i+1)*batch_size batch_data.append(data_list[start:end]) last_start = (n-1) * batch_size last_end = MAX_INT batch_data.append(data_list[last_start:last_end]) return batch_data def gsm8k_test(model, data_path, start=0, end=MAX_INT, batch_size=1, tensor_parallel_size=1): INVALID_ANS = "[invalid]" gsm8k_ins = [] gsm8k_answers = [] problem_prompt = ( "Below is an instruction that describes a task. " "Write a response that appropriately completes the request.\n\n" "### Instruction:\n{instruction}\n\n### Response: Let's think step by step." ) print('promt =====', problem_prompt) with open(data_path,"r+", encoding="utf8") as f: for idx, item in enumerate(jsonlines.Reader(f)): temp_instr = problem_prompt.format(instruction=item["query"]) gsm8k_ins.append(temp_instr) temp_ans = item['response'].split('#### ')[1] temp_ans = int(temp_ans.replace(',', '')) gsm8k_answers.append(temp_ans) gsm8k_ins = gsm8k_ins[start:end] gsm8k_answers = gsm8k_answers[start:end] print('lenght ====', len(gsm8k_ins)) batch_gsm8k_ins = batch_data(gsm8k_ins, batch_size=batch_size) stop_tokens = ["Question:", "Question", "USER:", "USER", "ASSISTANT:", "ASSISTANT", "Instruction:", "Instruction", "Response:", "Response"] sampling_params = SamplingParams(temperature=0.0, top_p=1, max_tokens=512, stop=stop_tokens) print('sampleing =====', sampling_params) llm = LLM(model=model,tensor_parallel_size=tensor_parallel_size) result = [] res_completions = [] for idx, (prompt, prompt_answer) in enumerate(zip(batch_gsm8k_ins, gsm8k_answers)): if isinstance(prompt, list): pass else: prompt = [prompt] completions = llm.generate(prompt, sampling_params) for output in completions: prompt = output.prompt generated_text = output.outputs[0].text res_completions.append(generated_text) invalid_outputs = [] for idx, (prompt, completion, prompt_answer) in enumerate(zip(gsm8k_ins, res_completions, gsm8k_answers)): doc = {'question': prompt} y_pred = extract_answer_number(completion) if y_pred != None: result.append(float(y_pred) == float(prompt_answer)) else: result.append(False) temp = {'question': prompt, 'output': completion, 'answer': prompt_answer} invalid_outputs.append(temp) acc = sum(result) / len(result) print('len invalid outputs ====', len(invalid_outputs), ', valid_outputs===', invalid_outputs) print('start===', start, ', end====', end) print('gsm8k length====', len(result), ', gsm8k acc====', acc) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--model", type=str) # model path parser.add_argument("--data_file", type=str, default='') # data path parser.add_argument("--start", type=int, default=0) #start index parser.add_argument("--end", type=int, default=MAX_INT) # end index parser.add_argument("--batch_size", type=int, default=400) # batch_size parser.add_argument("--tensor_parallel_size", type=int, default=8) # tensor_parallel_size return parser.parse_args() if __name__ == "__main__": args = parse_args() gsm8k_test(model=args.model, data_path=args.data_file, start=args.start, end=args.end, batch_size=args.batch_size, tensor_parallel_size=args.tensor_parallel_size)