File size: 13,622 Bytes
e56a787
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b42ac6
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
# app.py
import gradio as gr
import torch
from transformers import (
    WhisperProcessor, WhisperForConditionalGeneration,
    Wav2Vec2Processor, Wav2Vec2ForCTC
)
import librosa
import numpy as np
import warnings

warnings.filterwarnings("ignore")


class NigerianWhisperTranscriber:
    def __init__(self):
        self.models = {}
        self.processors = {}
        self.device = "cuda" if torch.cuda.is_available() else "cpu"

        # Model configurations with their architectures
        self.model_configs = {
            "Yoruba": {
                "model_name": "DereAbdulhameed/Whisper-Yoruba",
                "architecture": "whisper"
            },
            "Hausa": {
                "model_name": "Baghdad99/saad-speech-recognition-hausa-audio-to-text",
                "architecture": "whisper"
            },
            "Igbo": {
                "model_name": "AstralZander/igbo_ASR",
                "architecture": "wav2vec2"
            }
        }

        print(f"Using device: {self.device}")

    def load_model(self, language):
        """Load model and processor for specific language"""
        if language not in self.models:
            try:
                print(f"Loading {language} model...")
                config = self.model_configs[language]
                model_name = config["model_name"]
                architecture = config["architecture"]

                if architecture == "whisper":
                    # Load Whisper model
                    processor = WhisperProcessor.from_pretrained(model_name)
                    model = WhisperForConditionalGeneration.from_pretrained(model_name)
                    model = model.to(self.device)

                elif architecture == "wav2vec2":
                    # Load Wav2Vec2 model
                    processor = Wav2Vec2Processor.from_pretrained(model_name)
                    model = Wav2Vec2ForCTC.from_pretrained(model_name)
                    model = model.to(self.device)

                self.processors[language] = processor
                self.models[language] = model

                print(f"{language} model loaded successfully!")
                return True
            except Exception as e:
                print(f"Error loading {language} model: {str(e)}")
                return False
        return True

    def preprocess_audio(self, audio_path):
        """Preprocess audio file for Whisper"""
        try:
            # Load audio file
            audio, sr = librosa.load(audio_path, sr=16000)

            # Ensure audio is not empty
            if len(audio) == 0:
                raise ValueError("Audio file is empty")

            # Normalize audio
            audio = audio.astype(np.float32)

            return audio
        except Exception as e:
            raise ValueError(f"Error processing audio: {str(e)}")

    def chunk_audio(self, audio, chunk_length=25):
        """Split audio into chunks for processing longer recordings"""
        sample_rate = 16000
        chunk_samples = chunk_length * sample_rate

        chunks = []
        for i in range(0, len(audio), chunk_samples):
            chunk = audio[i:i + chunk_samples]
            if len(chunk) > sample_rate:  # Only process chunks longer than 1 second
                chunks.append(chunk)

        return chunks

    def transcribe_chunk(self, audio_chunk, language):
        """Transcribe a single audio chunk"""
        processor = self.processors[language]
        model = self.models[language]
        config = self.model_configs[language]

        if config["architecture"] == "whisper":
            # Whisper processing
            inputs = processor(
                audio_chunk,
                sampling_rate=16000,
                return_tensors="pt"
            )

            input_features = inputs.input_features.to(self.device)

            # Create attention mask if available
            attention_mask = None
            if hasattr(inputs, 'attention_mask') and inputs.attention_mask is not None:
                attention_mask = inputs.attention_mask.to(self.device)

            # Generate transcription
            with torch.no_grad():
                if attention_mask is not None:
                    predicted_ids = model.generate(
                        input_features,
                        attention_mask=attention_mask,
                        max_new_tokens=400,
                        num_beams=5,
                        temperature=0.0,
                        do_sample=False,
                        use_cache=True,
                        pad_token_id=processor.tokenizer.eos_token_id
                    )
                else:
                    predicted_ids = model.generate(
                        input_features,
                        max_new_tokens=400,
                        num_beams=5,
                        temperature=0.0,
                        do_sample=False,
                        use_cache=True,
                        pad_token_id=processor.tokenizer.eos_token_id
                    )

            # Decode transcription
            transcription = processor.batch_decode(
                predicted_ids,
                skip_special_tokens=True
            )[0]

            return transcription.strip()

        elif config["architecture"] == "wav2vec2":
            # Wav2Vec2 processing
            inputs = processor(
                audio_chunk,
                sampling_rate=16000,
                return_tensors="pt",
                padding=True
            )

            input_values = inputs.input_values.to(self.device)

            # Generate transcription
            with torch.no_grad():
                logits = model(input_values).logits
                predicted_ids = torch.argmax(logits, dim=-1)

            # Decode transcription for Wav2Vec2
            # The key is to use `skip_special_tokens=True` here as well,
            # and potentially handle any remaining [PAD] explicitly if the tokenizer
            # doesn't completely remove them with that flag.
            transcription = processor.batch_decode(
                predicted_ids,
                skip_special_tokens=True  # Ensure special tokens are skipped
            )[0]

            # Additional clean-up for Wav2Vec2 specific models if skip_special_tokens isn't enough
            # Some Wav2Vec2 tokenizers might represent padding characters differently or
            # not fully remove them with skip_special_tokens=True depending on how they were trained.
            # We can perform an explicit string replacement as a fallback.
            transcription = transcription.replace("[PAD]", "").strip()
            transcription = " ".join(transcription.split())  # To remove extra spaces

            return transcription.strip()

    def transcribe(self, audio_path, language):
        """Transcribe audio file in specified language"""
        try:
            # Load model if not already loaded
            if not self.load_model(language):
                return f"Error: Could not load {language} model"

            # Preprocess audio
            audio = self.preprocess_audio(audio_path)

            # Check audio length (25 seconds = 400,000 samples at 16kHz)
            if len(audio) > 400000:  # If longer than 25 seconds
                # Process in chunks
                chunks = self.chunk_audio(audio, chunk_length=25)
                transcriptions = []

                for i, chunk in enumerate(chunks):
                    print(f"Processing chunk {i+1}/{len(chunks)}")

                    # Transcribe chunk
                    chunk_transcription = self.transcribe_chunk(chunk, language)
                    transcriptions.append(chunk_transcription)

                # Combine all transcriptions
                full_transcription = " ".join(transcriptions)
                return full_transcription

            else:
                # Process short audio normally
                return self.transcribe_chunk(audio, language)

        except Exception as e:
            return f"Error during transcription: {str(e)}"


# Initialize transcriber
transcriber = NigerianWhisperTranscriber()


def transcribe_audio_unified(audio_file, audio_mic, language):
    """Gradio function for transcription from either file or microphone"""
    # Determine which audio source to use
    audio_source = audio_file if audio_file is not None else audio_mic

    if audio_source is None:
        return "Please upload an audio file or record from microphone"

    try:
        result = transcriber.transcribe(audio_source, language)
        return result
    except Exception as e:
        return f"Transcription failed: {str(e)}"


def get_model_info(language):
    """Get information about the selected model"""
    model_info = {
        "Yoruba": "DereAbdulhameed/Whisper-Yoruba - Whisper model specialized for Yoruba language",
        "Hausa": "Baghdad99/saad-speech-recognition-hausa-audio-to-text - Fine-tuned Whisper model for Hausa (WER: 44.4%)",
        "Igbo": "AstralZander/igbo_ASR - Wav2Vec2-XLS-R model fine-tuned for Igbo language (WER: 51%)"
    }
    return model_info.get(language, "Model information not available")


# Create Gradio interface
with gr.Blocks(
    title="Nigerian Languages Speech Transcription",
    theme=gr.themes.Soft(),
    css="""
    .main-header {
        text-align: center;
        color: #2E7D32;
        margin-bottom: 20px;
    }
    .language-info {
        background-color: #f5f5f5;
        padding: 10px;
        border-radius: 5px;
        margin: 10px 0;
    }
    """
) as demo:

    gr.HTML("""
    <h1 class="main-header">🎀 Nigerian Languages Speech Transcription</h1>
    <p style="text-align: center; color: #666;">
        Transcribe audio in Yoruba, Hausa, and Igbo using specialized Whisper models
    </p>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            # Language selection
            language_dropdown = gr.Dropdown(
                choices=["Yoruba", "Hausa", "Igbo"],
                value="Yoruba",
                label="Select Language",
                info="Choose the language of your audio file"
            )

            # Audio input options
            gr.HTML("<h3>🎡 Audio Input Options</h3>")

            with gr.Tabs():
                with gr.TabItem("πŸ“ Upload File"):
                    audio_file = gr.Audio(
                        label="Upload Audio File",
                        type="filepath",
                        format="wav"
                    )

                with gr.TabItem("🎀 Record Speech"):
                    audio_mic = gr.Audio(
                        label="Record from Microphone",
                        type="filepath"
                    )

            # Transcribe button
            transcribe_btn = gr.Button(
                "🎯 Transcribe Audio",
                variant="primary",
                size="lg"
            )

            # Model information
            model_info_text = gr.Textbox(
                label="Model Information",
                value=get_model_info("Yoruba"),
                interactive=False,
                elem_classes="language-info"
            )

        with gr.Column(scale=2):
            # Transcription output
            transcription_output = gr.Textbox(
                label="Transcription Result",
                placeholder="Your transcription will appear here...",
                lines=10,
                max_lines=20,
                show_copy_button=True
            )

            # Usage instructions
            gr.HTML("""
            <div style="margin-top: 20px; padding: 15px; background-color: #e8f5e8; border-radius: 5px;">
                <h3>πŸ“‹ How to Use:</h3>
                <ol>
                    <li>Select your target language (Yoruba, Hausa, or Igbo)</li>
                    <li><strong>Option 1:</strong> Upload an audio file (WAV, MP3, etc.)</li>
                    <li><strong>Option 2:</strong> Click the microphone tab and record speech directly</li>
                    <li>Click "Transcribe Audio" to get the text transcription</li>
                    <li>Copy the result using the copy button</li>
                </ol>
                <p><strong>Note:</strong> First-time model loading may take a few minutes.</p>
                <p><strong>Recording Tip:</strong> Speak clearly and ensure good audio quality for better transcription accuracy.</p>
                <p><strong>Long Audio:</strong> Audio longer than 25 seconds will be automatically processed in chunks.</p>
            </div>
            """)

    # Event handlers
    transcribe_btn.click(
        fn=transcribe_audio_unified,
        inputs=[audio_file, audio_mic, language_dropdown],
        outputs=transcription_output,
        show_progress=True
    )

    language_dropdown.change(
        fn=get_model_info,
        inputs=language_dropdown,
        outputs=model_info_text
    )

    # Examples section
    gr.HTML("""
    <div style="margin-top: 30px;">
        <h3>🌍 Supported Languages:</h3>
        <ul>
            <li><strong>Yoruba:</strong> Widely spoken in Nigeria, Benin, and Togo</li>
            <li><strong>Hausa:</strong> Major language in Northern Nigeria and Niger</li>
            <li><strong>Igbo:</strong> Predominantly spoken in Southeastern Nigeria</li>
        </ul>
    </div>
    """)


# Launch the application
if __name__ == "__main__":
    demo.launch(
        server_name="0.0.0.0",
        server_port=7860,
        share=True,
        debug=True,
        show_error=True
    )