Create content_analysis.py
Browse files- content_analysis.py +210 -0
content_analysis.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# content_analysis.py
|
2 |
+
import re
|
3 |
+
from typing import List, Dict, Any
|
4 |
+
from collections import Counter
|
5 |
+
import language_tool_python
|
6 |
+
import traceback
|
7 |
+
|
8 |
+
# Import utility from text_utils
|
9 |
+
from text_utils import convert_markdown_to_plain_text
|
10 |
+
|
11 |
+
def check_text_presence(full_text: str, search_terms: List[str]) -> Dict[str, bool]:
|
12 |
+
return {term: term.lower() in full_text.lower() for term in search_terms}
|
13 |
+
|
14 |
+
def label_authors(full_text: str) -> str:
|
15 |
+
author_line_regex = r"^(?:.*\n)(.*?)(?:\n\n)"
|
16 |
+
match = re.search(author_line_regex, full_text, re.MULTILINE)
|
17 |
+
if match:
|
18 |
+
authors = match.group(1).strip()
|
19 |
+
return full_text.replace(authors, f"Authors: {authors}")
|
20 |
+
return full_text
|
21 |
+
|
22 |
+
def check_metadata(plain_text: str) -> Dict[str, Any]:
|
23 |
+
return {
|
24 |
+
"author_email": bool(re.search(r'\b[\w.-]+?@\w+?\.\w+?\b', plain_text)),
|
25 |
+
"list_of_authors": bool(re.search(r'Authors?:', plain_text, re.IGNORECASE)),
|
26 |
+
"keywords_list": bool(re.search(r'Keywords?:', plain_text, re.IGNORECASE)),
|
27 |
+
"word_count": len(plain_text.split()) or "Missing"
|
28 |
+
}
|
29 |
+
|
30 |
+
def check_disclosures(plain_text: str) -> Dict[str, bool]:
|
31 |
+
search_terms = [
|
32 |
+
"conflict of interest statement",
|
33 |
+
"ethics statement",
|
34 |
+
"funding statement",
|
35 |
+
"data access statement"
|
36 |
+
]
|
37 |
+
results = check_text_presence(plain_text, search_terms)
|
38 |
+
has_author_contribution = ("author contribution statement" in plain_text.lower() or
|
39 |
+
"author contributions statement" in plain_text.lower())
|
40 |
+
results["author contribution statement"] = has_author_contribution
|
41 |
+
return results
|
42 |
+
|
43 |
+
def check_figures_and_tables(plain_text: str) -> Dict[str, bool]:
|
44 |
+
return {
|
45 |
+
"figures_with_citations": bool(re.search(r'Figure \d+.*?citation', plain_text, re.IGNORECASE)),
|
46 |
+
"figures_legends": bool(re.search(r'Figure \d+.*?legend', plain_text, re.IGNORECASE)),
|
47 |
+
"tables_legends": bool(re.search(r'Table \d+.*?legend', plain_text, re.IGNORECASE))
|
48 |
+
}
|
49 |
+
|
50 |
+
def check_references_summary(plain_text: str) -> Dict[str, Any]:
|
51 |
+
abstract_candidate = plain_text[:2000]
|
52 |
+
return {
|
53 |
+
"old_references": bool(re.search(r'\b19[0-9]{2}\b', plain_text)),
|
54 |
+
"citations_in_abstract": bool(re.search(r'\[\d+\]', abstract_candidate, re.IGNORECASE)) or \
|
55 |
+
bool(re.search(r'\bcit(?:ation|ed)\b', abstract_candidate, re.IGNORECASE)),
|
56 |
+
"reference_count": len(re.findall(r'\[\d+(?:,\s*\d+)*\]', plain_text)),
|
57 |
+
"self_citations": bool(re.search(r'Self-citation', plain_text, re.IGNORECASE))
|
58 |
+
}
|
59 |
+
|
60 |
+
def check_structure(plain_text: str) -> Dict[str, bool]:
|
61 |
+
text_lower = plain_text.lower()
|
62 |
+
return {
|
63 |
+
"imrad_structure": all(section.lower() in text_lower for section in ["introduction", "method", "result", "discussion"]),
|
64 |
+
"abstract_structure": "structured abstract" in text_lower
|
65 |
+
}
|
66 |
+
|
67 |
+
def check_language_issues_and_regex(markdown_text_from_pdf: str) -> Dict[str, Any]:
|
68 |
+
if not markdown_text_from_pdf.strip():
|
69 |
+
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
|
70 |
+
|
71 |
+
plain_text_from_markdown = convert_markdown_to_plain_text(markdown_text_from_pdf)
|
72 |
+
text_for_analysis = plain_text_from_markdown.replace('\n', ' ')
|
73 |
+
text_for_analysis = re.sub(r'\s+', ' ', text_for_analysis).strip()
|
74 |
+
|
75 |
+
if not text_for_analysis:
|
76 |
+
return {"total_issues": 0, "issues_list": [], "text_used_for_analysis": ""}
|
77 |
+
|
78 |
+
text_for_analysis_lower = text_for_analysis.lower()
|
79 |
+
|
80 |
+
abstract_match = re.search(r'\babstract\b', text_for_analysis_lower)
|
81 |
+
content_start_index = abstract_match.start() if abstract_match else 0
|
82 |
+
if abstract_match: print(f"Found 'abstract' at index {content_start_index}")
|
83 |
+
else: print(f"Did not find 'abstract', starting language analysis from index 0")
|
84 |
+
|
85 |
+
references_match = re.search(r'\breferences\b', text_for_analysis_lower)
|
86 |
+
bibliography_match = re.search(r'\bbibliography\b', text_for_analysis_lower)
|
87 |
+
content_end_index = len(text_for_analysis)
|
88 |
+
|
89 |
+
if references_match and bibliography_match:
|
90 |
+
content_end_index = min(references_match.start(), bibliography_match.start())
|
91 |
+
print(f"Found 'references' at {references_match.start()} and 'bibliography' at {bibliography_match.start()}. Using {content_end_index} as end boundary.")
|
92 |
+
elif references_match:
|
93 |
+
content_end_index = references_match.start()
|
94 |
+
print(f"Found 'references' at {content_end_index}. Using it as end boundary.")
|
95 |
+
elif bibliography_match:
|
96 |
+
content_end_index = bibliography_match.start()
|
97 |
+
print(f"Found 'bibliography' at {content_end_index}. Using it as end boundary.")
|
98 |
+
else:
|
99 |
+
print(f"Did not find 'references' or 'bibliography'. Language analysis up to end of text (index {content_end_index}).")
|
100 |
+
|
101 |
+
if content_start_index >= content_end_index:
|
102 |
+
print(f"Warning: Content start index ({content_start_index}) is not before content end index ({content_end_index}). No language issues will be reported from this range.")
|
103 |
+
|
104 |
+
tool = None
|
105 |
+
processed_issues: List[Dict[str, Any]] = []
|
106 |
+
try:
|
107 |
+
tool = language_tool_python.LanguageTool('en-US')
|
108 |
+
raw_lt_matches = tool.check(text_for_analysis)
|
109 |
+
|
110 |
+
lt_issues_in_range = 0
|
111 |
+
for idx, match in enumerate(raw_lt_matches):
|
112 |
+
if match.ruleId == "EN_SPLIT_WORDS_HYPHEN": continue
|
113 |
+
if not (content_start_index <= match.offset < content_end_index): continue
|
114 |
+
lt_issues_in_range +=1
|
115 |
+
context_str = text_for_analysis[match.offset : match.offset + match.errorLength]
|
116 |
+
processed_issues.append({
|
117 |
+
'_internal_id': f"lt_{idx}", 'ruleId': match.ruleId, 'message': match.message,
|
118 |
+
'context_text': context_str, 'offset_in_text': match.offset, 'error_length': match.errorLength,
|
119 |
+
'replacements_suggestion': match.replacements[:3] if match.replacements else [],
|
120 |
+
'category_name': match.category, 'is_mapped_to_pdf': False,
|
121 |
+
'pdf_coordinates_list': [], 'mapped_page_number': -1
|
122 |
+
})
|
123 |
+
print(f"LanguageTool found {len(raw_lt_matches)} raw issues, {lt_issues_in_range} issues within defined content range.")
|
124 |
+
|
125 |
+
regex_pattern = r'\b(\w+)\[(\d+)\]'
|
126 |
+
regex_matches = list(re.finditer(regex_pattern, text_for_analysis))
|
127 |
+
|
128 |
+
regex_issues_in_range = 0
|
129 |
+
for reg_idx, match in enumerate(regex_matches):
|
130 |
+
if not (content_start_index <= match.start() < content_end_index): continue
|
131 |
+
regex_issues_in_range += 1
|
132 |
+
word = match.group(1); number = match.group(2)
|
133 |
+
processed_issues.append({
|
134 |
+
'_internal_id': f"regex_{reg_idx}", 'ruleId': "SPACE_BEFORE_BRACKET",
|
135 |
+
'message': f"Missing space before '[' in '{word}[{number}]'. Should be '{word} [{number}]'.",
|
136 |
+
'context_text': text_for_analysis[match.start():match.end()],
|
137 |
+
'offset_in_text': match.start(), 'error_length': match.end() - match.start(),
|
138 |
+
'replacements_suggestion': [f"{word} [{number}]"], 'category_name': "Formatting",
|
139 |
+
'is_mapped_to_pdf': False, 'pdf_coordinates_list': [], 'mapped_page_number': -1
|
140 |
+
})
|
141 |
+
print(f"Regex check found {len(regex_matches)} raw matches, {regex_issues_in_range} issues within defined content range.")
|
142 |
+
|
143 |
+
return {
|
144 |
+
"total_issues": len(processed_issues), "issues_list": processed_issues,
|
145 |
+
"text_used_for_analysis": text_for_analysis
|
146 |
+
}
|
147 |
+
except Exception as e:
|
148 |
+
print(f"Error in check_language_issues_and_regex: {e}")
|
149 |
+
traceback.print_exc()
|
150 |
+
return {"error": str(e), "total_issues": 0, "issues_list": [], "text_used_for_analysis": text_for_analysis}
|
151 |
+
finally:
|
152 |
+
if tool: tool.close()
|
153 |
+
|
154 |
+
def check_figure_order(plain_text: str) -> Dict[str, Any]:
|
155 |
+
figure_pattern = r'(?:Fig(?:ure)?\.?|Figure)\s*(\d+)'
|
156 |
+
figure_references_str = re.findall(figure_pattern, plain_text, re.IGNORECASE)
|
157 |
+
|
158 |
+
valid_figure_numbers_int = [int(num_str) for num_str in figure_references_str if num_str.isdigit()]
|
159 |
+
|
160 |
+
unique_sorted_figures = sorted(list(set(valid_figure_numbers_int)))
|
161 |
+
is_sequential = all(unique_sorted_figures[i] + 1 == unique_sorted_figures[i+1] for i in range(len(unique_sorted_figures)-1))
|
162 |
+
|
163 |
+
missing_figures = []
|
164 |
+
if unique_sorted_figures:
|
165 |
+
expected_figures = set(range(1, max(unique_sorted_figures) + 1))
|
166 |
+
missing_figures = sorted(list(expected_figures - set(unique_sorted_figures)))
|
167 |
+
|
168 |
+
counts = Counter(valid_figure_numbers_int)
|
169 |
+
duplicate_refs = [num for num, count in counts.items() if count > 1]
|
170 |
+
|
171 |
+
return {
|
172 |
+
"sequential_order_of_unique_figures": is_sequential,
|
173 |
+
"figure_count_unique": len(unique_sorted_figures),
|
174 |
+
"missing_figures_in_sequence_to_max": missing_figures,
|
175 |
+
"figure_order_as_encountered": valid_figure_numbers_int,
|
176 |
+
"duplicate_references_to_same_figure_number": duplicate_refs
|
177 |
+
}
|
178 |
+
|
179 |
+
def check_reference_order(plain_text: str) -> Dict[str, Any]:
|
180 |
+
reference_pattern = r'\[(\d+)\]'
|
181 |
+
references_str = re.findall(reference_pattern, plain_text)
|
182 |
+
ref_numbers_int = [int(ref) for ref in references_str if ref.isdigit()]
|
183 |
+
|
184 |
+
max_ref_val = 0
|
185 |
+
out_of_order_details = []
|
186 |
+
|
187 |
+
if ref_numbers_int:
|
188 |
+
max_ref_val = max(ref_numbers_int)
|
189 |
+
current_max_seen_in_text = 0
|
190 |
+
for i, ref in enumerate(ref_numbers_int):
|
191 |
+
if ref < current_max_seen_in_text :
|
192 |
+
out_of_order_details.append({
|
193 |
+
"position_in_text_occurrences": i + 1, "value": ref,
|
194 |
+
"previous_max_value_seen": current_max_seen_in_text,
|
195 |
+
"message": f"Reference [{ref}] appeared after a higher reference [{current_max_seen_in_text}] was already cited."
|
196 |
+
})
|
197 |
+
current_max_seen_in_text = max(current_max_seen_in_text, ref)
|
198 |
+
|
199 |
+
all_expected_refs_up_to_max = set(range(1, max_ref_val + 1)) if max_ref_val > 0 else set()
|
200 |
+
used_refs_set = set(ref_numbers_int)
|
201 |
+
missing_refs_in_sequence_to_max = sorted(list(all_expected_refs_up_to_max - used_refs_set))
|
202 |
+
|
203 |
+
is_ordered_in_text = all(ref_numbers_int[i] <= ref_numbers_int[i+1] for i in range(len(ref_numbers_int)-1))
|
204 |
+
|
205 |
+
return {
|
206 |
+
"max_reference_number_cited": max_ref_val,
|
207 |
+
"out_of_order_citations_details": out_of_order_details,
|
208 |
+
"missing_references_up_to_max_cited": missing_refs_in_sequence_to_max,
|
209 |
+
"is_citation_order_non_decreasing_in_text": is_ordered_in_text
|
210 |
+
}
|