Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,10 @@
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
import joblib
|
|
|
4 |
import re
|
|
|
|
|
5 |
from transformers import pipeline
|
6 |
|
7 |
# Initialize FastAPI app
|
@@ -13,20 +16,29 @@ app = FastAPI(
|
|
13 |
redoc_url="/redoc"
|
14 |
)
|
15 |
|
16 |
-
# Load
|
17 |
model = joblib.load("model.joblib")
|
|
|
18 |
|
19 |
# Initialize NER pipeline
|
20 |
ner = pipeline('ner', model='Davlan/xlm-roberta-base-ner-hrl', grouped_entities=True)
|
21 |
|
22 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
NER_TO_TOKEN = {
|
24 |
'PER': 'full_name',
|
25 |
'EMAIL': 'email',
|
26 |
'DATE': 'dob'
|
27 |
}
|
28 |
|
29 |
-
# Regex patterns for PII
|
30 |
EMAIL_REGEX = r'\b[\w\.-]+@[\w\.-]+\.\w{2,}\b'
|
31 |
AADHAAR_REGEX = r'\b\d{4}\s?\d{4}\s?\d{4}\b'
|
32 |
CARD_REGEX = r'\b(?:\d[ -]*?){13,19}\b'
|
@@ -35,27 +47,17 @@ EXPIRY_REGEX = r'\b(0[1-9]|1[0-2])[\/\-]\d{2,4}\b'
|
|
35 |
PHONE_REGEX = r'\+?\d[\d\s\-]{7,14}\d'
|
36 |
DOB_REGEX = r'\b\d{1,2}[\/\-\.\s]\d{1,2}[\/\-\.\s]\d{2,4}\b'
|
37 |
|
38 |
-
#
|
39 |
-
class EmailInput(BaseModel):
|
40 |
-
input_email_body: str
|
41 |
-
|
42 |
-
# Updated PII Masking Function with NER and regex
|
43 |
def mask_and_store_all_pii(text):
|
44 |
text = str(text)
|
45 |
mapping = {}
|
46 |
counter = {
|
47 |
-
'full_name': 0,
|
48 |
-
'
|
49 |
-
'phone_number': 0,
|
50 |
-
'dob': 0,
|
51 |
-
'aadhar_num': 0,
|
52 |
-
'credit_debit_no': 0,
|
53 |
-
'cvv_no': 0,
|
54 |
-
'expiry_no': 0
|
55 |
}
|
56 |
entity_list = []
|
57 |
|
58 |
-
# NER masking
|
59 |
entities = ner(text)
|
60 |
for ent in entities:
|
61 |
label = ent['entity_group']
|
@@ -65,7 +67,6 @@ def mask_and_store_all_pii(text):
|
|
65 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
66 |
if original in text:
|
67 |
start = text.index(original)
|
68 |
-
end = start + len(original)
|
69 |
text = text.replace(original, token, 1)
|
70 |
mapping[token] = original
|
71 |
counter[token_name] += 1
|
@@ -75,7 +76,7 @@ def mask_and_store_all_pii(text):
|
|
75 |
"entity": original
|
76 |
})
|
77 |
|
78 |
-
# Regex masking
|
79 |
regex_map = [
|
80 |
(CARD_REGEX, 'credit_debit_no'),
|
81 |
(AADHAAR_REGEX, 'aadhar_num'),
|
@@ -85,14 +86,12 @@ def mask_and_store_all_pii(text):
|
|
85 |
(EMAIL_REGEX, 'email'),
|
86 |
(DOB_REGEX, 'dob')
|
87 |
]
|
88 |
-
|
89 |
for regex, token_name in regex_map:
|
90 |
for match in re.finditer(regex, text):
|
91 |
original = match.group(0)
|
92 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
93 |
-
start = match.start()
|
94 |
-
end = match.end()
|
95 |
if original in text:
|
|
|
96 |
text = text.replace(original, token, 1)
|
97 |
mapping[token] = original
|
98 |
counter[token_name] += 1
|
@@ -104,24 +103,19 @@ def mask_and_store_all_pii(text):
|
|
104 |
|
105 |
return text, mapping, entity_list
|
106 |
|
107 |
-
# Restore PII
|
108 |
-
|
109 |
def restore_pii(masked_text, pii_map):
|
110 |
for placeholder, original in pii_map.items():
|
111 |
masked_text = masked_text.replace(placeholder, original)
|
112 |
return masked_text
|
113 |
|
114 |
-
#
|
115 |
@app.post("/classify")
|
116 |
def classify_email(data: EmailInput):
|
117 |
raw_text = data.input_email_body
|
118 |
-
|
119 |
-
# Masking
|
120 |
masked_text, pii_map, entity_list = mask_and_store_all_pii(raw_text)
|
121 |
-
|
122 |
-
|
123 |
-
predicted_category = model.predict([masked_text])[0]
|
124 |
-
|
125 |
return {
|
126 |
"input_email_body": raw_text,
|
127 |
"list_of_masked_entities": entity_list,
|
@@ -129,7 +123,33 @@ def classify_email(data: EmailInput):
|
|
129 |
"category_of_the_email": predicted_category
|
130 |
}
|
131 |
|
132 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
@app.get("/")
|
134 |
def root():
|
135 |
return {"message": "Email Classification API is running."}
|
|
|
1 |
from fastapi import FastAPI
|
2 |
from pydantic import BaseModel
|
3 |
import joblib
|
4 |
+
import pandas as pd
|
5 |
import re
|
6 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
7 |
+
from sklearn.svm import LinearSVC
|
8 |
from transformers import pipeline
|
9 |
|
10 |
# Initialize FastAPI app
|
|
|
16 |
redoc_url="/redoc"
|
17 |
)
|
18 |
|
19 |
+
# Load model and vectorizer
|
20 |
model = joblib.load("model.joblib")
|
21 |
+
vectorizer = joblib.load("vectorizer.joblib")
|
22 |
|
23 |
# Initialize NER pipeline
|
24 |
ner = pipeline('ner', model='Davlan/xlm-roberta-base-ner-hrl', grouped_entities=True)
|
25 |
|
26 |
+
# Input schemas
|
27 |
+
class EmailInput(BaseModel):
|
28 |
+
input_email_body: str
|
29 |
+
|
30 |
+
class TrainingExample(BaseModel):
|
31 |
+
email_body: str
|
32 |
+
label: str
|
33 |
+
|
34 |
+
# Map NER labels to types
|
35 |
NER_TO_TOKEN = {
|
36 |
'PER': 'full_name',
|
37 |
'EMAIL': 'email',
|
38 |
'DATE': 'dob'
|
39 |
}
|
40 |
|
41 |
+
# Regex patterns for PII
|
42 |
EMAIL_REGEX = r'\b[\w\.-]+@[\w\.-]+\.\w{2,}\b'
|
43 |
AADHAAR_REGEX = r'\b\d{4}\s?\d{4}\s?\d{4}\b'
|
44 |
CARD_REGEX = r'\b(?:\d[ -]*?){13,19}\b'
|
|
|
47 |
PHONE_REGEX = r'\+?\d[\d\s\-]{7,14}\d'
|
48 |
DOB_REGEX = r'\b\d{1,2}[\/\-\.\s]\d{1,2}[\/\-\.\s]\d{2,4}\b'
|
49 |
|
50 |
+
# Masking function
|
|
|
|
|
|
|
|
|
51 |
def mask_and_store_all_pii(text):
|
52 |
text = str(text)
|
53 |
mapping = {}
|
54 |
counter = {
|
55 |
+
'full_name': 0, 'email': 0, 'phone_number': 0, 'dob': 0,
|
56 |
+
'aadhar_num': 0, 'credit_debit_no': 0, 'cvv_no': 0, 'expiry_no': 0
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
}
|
58 |
entity_list = []
|
59 |
|
60 |
+
# NER-based masking
|
61 |
entities = ner(text)
|
62 |
for ent in entities:
|
63 |
label = ent['entity_group']
|
|
|
67 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
68 |
if original in text:
|
69 |
start = text.index(original)
|
|
|
70 |
text = text.replace(original, token, 1)
|
71 |
mapping[token] = original
|
72 |
counter[token_name] += 1
|
|
|
76 |
"entity": original
|
77 |
})
|
78 |
|
79 |
+
# Regex-based masking
|
80 |
regex_map = [
|
81 |
(CARD_REGEX, 'credit_debit_no'),
|
82 |
(AADHAAR_REGEX, 'aadhar_num'),
|
|
|
86 |
(EMAIL_REGEX, 'email'),
|
87 |
(DOB_REGEX, 'dob')
|
88 |
]
|
|
|
89 |
for regex, token_name in regex_map:
|
90 |
for match in re.finditer(regex, text):
|
91 |
original = match.group(0)
|
92 |
token = f"[{token_name}_{counter[token_name]:03d}]"
|
|
|
|
|
93 |
if original in text:
|
94 |
+
start = text.index(original)
|
95 |
text = text.replace(original, token, 1)
|
96 |
mapping[token] = original
|
97 |
counter[token_name] += 1
|
|
|
103 |
|
104 |
return text, mapping, entity_list
|
105 |
|
106 |
+
# Restore PII (optional use)
|
|
|
107 |
def restore_pii(masked_text, pii_map):
|
108 |
for placeholder, original in pii_map.items():
|
109 |
masked_text = masked_text.replace(placeholder, original)
|
110 |
return masked_text
|
111 |
|
112 |
+
# Prediction endpoint
|
113 |
@app.post("/classify")
|
114 |
def classify_email(data: EmailInput):
|
115 |
raw_text = data.input_email_body
|
|
|
|
|
116 |
masked_text, pii_map, entity_list = mask_and_store_all_pii(raw_text)
|
117 |
+
features = vectorizer.transform([masked_text])
|
118 |
+
predicted_category = model.predict(features)[0]
|
|
|
|
|
119 |
return {
|
120 |
"input_email_body": raw_text,
|
121 |
"list_of_masked_entities": entity_list,
|
|
|
123 |
"category_of_the_email": predicted_category
|
124 |
}
|
125 |
|
126 |
+
# Retraining endpoint
|
127 |
+
@app.post("/train")
|
128 |
+
def train_model(new_example: TrainingExample):
|
129 |
+
df = pd.DataFrame([{"email_body": new_example.email_body, "label": new_example.label}])
|
130 |
+
try:
|
131 |
+
df.to_csv("training_data.csv", mode='a', header=not pd.io.common.file_exists("training_data.csv"), index=False)
|
132 |
+
except Exception as e:
|
133 |
+
return {"error": f"Failed to append to dataset: {str(e)}"}
|
134 |
+
|
135 |
+
# Load dataset
|
136 |
+
full_df = pd.read_csv("training_data.csv")
|
137 |
+
full_df['masked_text'] = full_df['email_body'].apply(lambda x: mask_and_store_all_pii(x)[0])
|
138 |
+
|
139 |
+
# Vectorize and train
|
140 |
+
new_vectorizer = TfidfVectorizer()
|
141 |
+
X = new_vectorizer.fit_transform(full_df['masked_text'])
|
142 |
+
y = full_df['label']
|
143 |
+
new_model = LinearSVC()
|
144 |
+
new_model.fit(X, y)
|
145 |
+
|
146 |
+
# Save updated model and vectorizer
|
147 |
+
joblib.dump(new_model, "model.joblib")
|
148 |
+
joblib.dump(new_vectorizer, "vectorizer.joblib")
|
149 |
+
|
150 |
+
return {"message": "Model retrained successfully with new example."}
|
151 |
+
|
152 |
+
# Health check
|
153 |
@app.get("/")
|
154 |
def root():
|
155 |
return {"message": "Email Classification API is running."}
|