Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
import gradio as gr
|
4 |
+
from langchain_groq import ChatGroq
|
5 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
6 |
+
from langchain.vectorstores import Chroma
|
7 |
+
from langchain.chains import RetrievalQA
|
8 |
+
from langchain.prompts import PromptTemplate
|
9 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
10 |
+
from langchain.document_loaders import PyPDFLoader, DirectoryLoader
|
11 |
+
from transformers import pipeline
|
12 |
+
import traceback
|
13 |
+
|
14 |
+
# Load psychiatrist details from JSON file
|
15 |
+
def load_psychiatrists_data():
|
16 |
+
try:
|
17 |
+
json_path = "psychiatrists_data.json" # Adjusted for local use
|
18 |
+
with open(json_path, "r", encoding="utf-8") as file:
|
19 |
+
data = json.load(file)
|
20 |
+
return {key.strip().lower(): value for key, value in data.get("India", {}).items()}
|
21 |
+
except FileNotFoundError:
|
22 |
+
print("❌ Error: psychiatrists_data.json file not found.")
|
23 |
+
return {}
|
24 |
+
|
25 |
+
doc_data = load_psychiatrists_data()
|
26 |
+
|
27 |
+
# Initialize sentiment analysis model
|
28 |
+
sentiment_classifier = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
29 |
+
|
30 |
+
# Initialize LLM
|
31 |
+
def initialize_llm():
|
32 |
+
return ChatGroq(
|
33 |
+
temperature=0,
|
34 |
+
groq_api_key=os.getenv("GROQ_API_KEY"), # Use environment variable for security
|
35 |
+
model_name="llama-3.3-70b-versatile"
|
36 |
+
)
|
37 |
+
|
38 |
+
# Create or Load ChromaDB
|
39 |
+
def create_vector_db():
|
40 |
+
db_path = "./chroma_db"
|
41 |
+
|
42 |
+
if os.path.exists(db_path):
|
43 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
44 |
+
return Chroma(persist_directory=db_path, embedding_function=embeddings)
|
45 |
+
|
46 |
+
print("📄 Creating new ChromaDB...")
|
47 |
+
loader = DirectoryLoader("./data", glob="*.pdf", loader_cls=PyPDFLoader) # Adjusted path
|
48 |
+
documents = loader.load()
|
49 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
50 |
+
texts = text_splitter.split_documents(documents)
|
51 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
52 |
+
vector_db = Chroma.from_documents(texts, embeddings, persist_directory=db_path)
|
53 |
+
vector_db.persist()
|
54 |
+
return vector_db
|
55 |
+
|
56 |
+
# Setup QA Chain
|
57 |
+
def setup_qa_chain(vector_db, llm):
|
58 |
+
retriever = vector_db.as_retriever()
|
59 |
+
prompt_template = """You are a compassionate mental health chatbot. Respond thoughtfully to the following question:
|
60 |
+
{context}
|
61 |
+
User: {question}
|
62 |
+
Chatbot: """
|
63 |
+
|
64 |
+
PROMPT = PromptTemplate(template=prompt_template, input_variables=["context", "question"])
|
65 |
+
|
66 |
+
return RetrievalQA.from_chain_type(
|
67 |
+
llm=llm,
|
68 |
+
chain_type="stuff",
|
69 |
+
retriever=retriever,
|
70 |
+
chain_type_kwargs={"prompt": PROMPT}
|
71 |
+
)
|
72 |
+
|
73 |
+
# Initialize LLM and QA Chain before using them
|
74 |
+
llm = initialize_llm()
|
75 |
+
vector_db = create_vector_db()
|
76 |
+
qa_chain = setup_qa_chain(vector_db, llm)
|
77 |
+
|
78 |
+
# Detect Serious Issues using Transformer Model
|
79 |
+
def detect_serious_issue(user_message):
|
80 |
+
result = sentiment_classifier(user_message)[0]
|
81 |
+
negative_sentiment = result["label"] == "NEGATIVE" and result["score"] > 0.7
|
82 |
+
return negative_sentiment
|
83 |
+
|
84 |
+
# Fetch Top Psychiatrists Based on Location
|
85 |
+
def get_psychiatrists_by_location(state):
|
86 |
+
state = state.strip().lower()
|
87 |
+
return doc_data.get(state, [])
|
88 |
+
|
89 |
+
def chatbot_interface(user_message, country, state):
|
90 |
+
try:
|
91 |
+
if user_message.lower() == "exit":
|
92 |
+
return "Chatbot: Take care of yourself. Goodbye! ❤️"
|
93 |
+
|
94 |
+
# Generate chatbot response
|
95 |
+
response = qa_chain.run(user_message)
|
96 |
+
|
97 |
+
# Check for serious issues
|
98 |
+
if detect_serious_issue(user_message):
|
99 |
+
if country.lower() == "india":
|
100 |
+
doctors = get_psychiatrists_by_location(state.lower())
|
101 |
+
if doctors:
|
102 |
+
doc_info = "\n".join([f"🏥 {doc['name']}\n📍 {doc['hospital']}\n📞 {doc['specialization']}" for doc in doctors])
|
103 |
+
return f"Chatbot: {response}\n\n🔹 Here are some psychiatrists in {state}:\n{doc_info}"
|
104 |
+
else:
|
105 |
+
return f"Chatbot: {response}\n\n⚠️ Sorry, no specific doctors found for {state}. Please visit a nearby hospital."
|
106 |
+
else:
|
107 |
+
return f"Chatbot: {response}\n\n⚠️ Currently, psychiatrist details are only available for India."
|
108 |
+
|
109 |
+
return f"Chatbot: {response}"
|
110 |
+
|
111 |
+
except Exception as e:
|
112 |
+
error_message = traceback.format_exc()
|
113 |
+
print("❌ ERROR DETECTED:\n", error_message)
|
114 |
+
return f"⚠️ Error in chatbot: {str(e)}"
|
115 |
+
|
116 |
+
gr.Interface(
|
117 |
+
fn=chatbot_interface,
|
118 |
+
inputs=[
|
119 |
+
gr.Textbox(label="Enter your message"),
|
120 |
+
gr.Dropdown(["India", "Other"], label="Country"),
|
121 |
+
gr.Textbox(label="State (if in India)")
|
122 |
+
],
|
123 |
+
outputs=gr.Textbox(label="Output"),
|
124 |
+
theme="soft"
|
125 |
+
).launch()
|