fedec65 commited on
Commit
b219614
Β·
verified Β·
1 Parent(s): 27f55c1

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +617 -0
app.py ADDED
@@ -0,0 +1,617 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Dashboard Narrator - Powered by OpenRouter.ai
3
+ A tool to analyze dashboard PDFs and generate comprehensive reports.
4
+ """
5
+
6
+ # Import required libraries
7
+ import os
8
+ import time
9
+ import threading
10
+ import io
11
+ import base64
12
+ import json
13
+ import requests
14
+ from PyPDF2 import PdfReader
15
+ from PIL import Image
16
+ import markdown
17
+ from weasyprint import HTML, CSS
18
+ from weasyprint.text.fonts import FontConfiguration
19
+ from pdf2image import convert_from_bytes
20
+ import gradio as gr
21
+
22
+ # Create a global progress tracker
23
+ class ProgressTracker:
24
+ def __init__(self):
25
+ self.progress = 0
26
+ self.message = "Ready"
27
+ self.is_processing = False
28
+ self.lock = threading.Lock()
29
+
30
+ def update(self, progress, message="Processing..."):
31
+ with self.lock:
32
+ self.progress = progress
33
+ self.message = message
34
+
35
+ def get_status(self):
36
+ with self.lock:
37
+ return f"{self.message} ({self.progress:.1f}%)"
38
+
39
+ def start_processing(self):
40
+ with self.lock:
41
+ self.is_processing = True
42
+ self.progress = 0
43
+ self.message = "Starting..."
44
+
45
+ def end_processing(self):
46
+ with self.lock:
47
+ self.is_processing = False
48
+ self.progress = 100
49
+ self.message = "Complete"
50
+
51
+ # Create a global instance
52
+ progress_tracker = ProgressTracker()
53
+ output_status = None
54
+
55
+ # Function to update the Gradio interface with progress
56
+ def update_progress():
57
+ global output_status
58
+ while progress_tracker.is_processing:
59
+ status = progress_tracker.get_status()
60
+ if output_status is not None:
61
+ output_status.update(value=status)
62
+ time.sleep(0.5)
63
+ return
64
+
65
+ # OpenRouter Client for making API calls
66
+ class OpenRouterClient:
67
+ def __init__(self, api_key):
68
+ self.api_key = api_key
69
+ self.base_url = "https://openrouter.ai/api/v1"
70
+
71
+ def messages_create(self, model, messages, system=None, temperature=0.7, max_tokens=None):
72
+ """Send messages to the OpenRouter API and return the response"""
73
+ url = f"{self.base_url}/chat/completions"
74
+
75
+ headers = {
76
+ "Authorization": f"Bearer {self.api_key}",
77
+ "Content-Type": "application/json"
78
+ }
79
+
80
+ payload = {
81
+ "model": model,
82
+ "messages": messages,
83
+ "temperature": temperature,
84
+ }
85
+
86
+ # Add system message if provided
87
+ if system:
88
+ payload["messages"].insert(0, {"role": "system", "content": system})
89
+
90
+ # Add max_tokens if provided
91
+ if max_tokens:
92
+ payload["max_tokens"] = max_tokens
93
+
94
+ try:
95
+ response = requests.post(url, headers=headers, json=payload)
96
+ response.raise_for_status() # Raise an exception for HTTP errors
97
+
98
+ result = response.json()
99
+
100
+ # Format the response to match the expected structure
101
+ formatted_response = type('obj', (object,), {
102
+ 'content': [
103
+ type('obj', (object,), {
104
+ 'text': result['choices'][0]['message']['content']
105
+ })
106
+ ]
107
+ })
108
+
109
+ return formatted_response
110
+
111
+ except requests.exceptions.RequestException as e:
112
+ print(f"API request error: {str(e)}")
113
+ if hasattr(e, 'response') and e.response:
114
+ print(f"Response: {e.response.text}")
115
+ raise
116
+
117
+ # Supported languages configuration
118
+ SUPPORTED_LANGUAGES = {
119
+ "italiano": {
120
+ "code": "it",
121
+ "name": "Italiano",
122
+ "report_title": "Analisi Dashboard",
123
+ "report_subtitle": "Report Dettagliato",
124
+ "date_label": "Data",
125
+ "system_prompt": "Sei un esperto analista di business intelligence specializzato nell'interpretazione di dashboard e dati visualizzati. Fornisci analisi in italiano approfondite e insight actionable basati sui dati forniti.",
126
+ "section_title": "ANALISI SEZIONE",
127
+ "multi_doc_title": "ANALISI DASHBOARD {index}"
128
+ },
129
+ "english": {
130
+ "code": "en",
131
+ "name": "English",
132
+ "report_title": "Dashboard Analysis",
133
+ "report_subtitle": "Detailed Report",
134
+ "date_label": "Date",
135
+ "system_prompt": "You are an expert business intelligence analyst specialized in interpreting dashboards and data visualizations. Provide in-depth analysis and actionable insights based on the data provided.",
136
+ "section_title": "SECTION ANALYSIS",
137
+ "multi_doc_title": "DASHBOARD {index} ANALYSIS"
138
+ },
139
+ "franΓ§ais": {
140
+ "code": "fr",
141
+ "name": "FranΓ§ais",
142
+ "report_title": "Analyse de Tableau de Bord",
143
+ "report_subtitle": "Rapport DΓ©taillΓ©",
144
+ "date_label": "Date",
145
+ "system_prompt": "Vous Γͺtes un analyste expert en business intelligence spΓ©cialisΓ© dans l'interprΓ©tation des tableaux de bord et des visualisations de donnΓ©es. Fournissez en franΓ§ais une analyse approfondie et des insights actionnables basΓ©s sur les donnΓ©es fournies.",
146
+ "section_title": "ANALYSE DE SECTION",
147
+ "multi_doc_title": "ANALYSE DU TABLEAU DE BORD {index}"
148
+ },
149
+ "espaΓ±ol": {
150
+ "code": "es",
151
+ "name": "EspaΓ±ol",
152
+ "report_title": "AnΓ‘lisis de Dashboard",
153
+ "report_subtitle": "Informe Detallado",
154
+ "date_label": "Fecha",
155
+ "system_prompt": "Eres un analista experto en inteligencia empresarial especializado en interpretar dashboards y visualizaciones de datos. Proporciona en espaΓ±ol un anΓ‘lisis en profundidad e insights accionables basados en los datos proporcionados.",
156
+ "section_title": "ANÁLISIS DE SECCIΓ“N",
157
+ "multi_doc_title": "ANÁLISIS DEL DASHBOARD {index}"
158
+ },
159
+ "deutsch": {
160
+ "code": "de",
161
+ "name": "Deutsch",
162
+ "report_title": "Dashboard-Analyse",
163
+ "report_subtitle": "Detaillierter Bericht",
164
+ "date_label": "Datum",
165
+ "system_prompt": "Sie sind ein Experte fΓΌr Business Intelligence-Analyse, der auf die Interpretation von Dashboards und Datenvisualisierungen spezialisiert ist. Bieten Sie auf Deutsch eine eingehende Analyse und umsetzbare Erkenntnisse auf Grundlage der bereitgestellten Daten.",
166
+ "section_title": "ABSCHNITTSANALYSE",
167
+ "multi_doc_title": "DASHBOARD-ANALYSE {index}"
168
+ }
169
+ }
170
+
171
+ # OpenRouter models
172
+ DEFAULT_MODEL = "meta-llama/llama-4-scout:free"
173
+ OPENROUTER_MODELS = [
174
+ "meta-llama/llama-4-scout:free",
175
+ "anthropic/claude-3-haiku:20240307",
176
+ "anthropic/claude-3-sonnet:20240229",
177
+ "anthropic/claude-3-opus:20240229",
178
+ "google/gemini-pro-1.5:latest",
179
+ "mistralai/mistral-large-latest"
180
+ ]
181
+
182
+ # Utility Functions
183
+ def extract_text_from_pdf(pdf_bytes):
184
+ """Extract text from a PDF file."""
185
+ try:
186
+ pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
187
+ text = ""
188
+ for page_num in range(len(pdf_reader.pages)):
189
+ extracted = pdf_reader.pages[page_num].extract_text()
190
+ if extracted:
191
+ text += extracted + "\n"
192
+ return text
193
+ except Exception as e:
194
+ print(f"Error extracting text from PDF: {str(e)}")
195
+ return ""
196
+
197
+ def divide_image_vertically(image, num_sections):
198
+ """Divide an image vertically into sections."""
199
+ width, height = image.size
200
+ section_height = height // num_sections
201
+ sections = []
202
+ for i in range(num_sections):
203
+ top = i * section_height
204
+ bottom = height if i == num_sections - 1 else (i + 1) * section_height
205
+ section = image.crop((0, top, width, bottom))
206
+ sections.append(section)
207
+ print(f"Section {i+1}: size {section.width}x{section.height} pixels")
208
+ return sections
209
+
210
+ def encode_image_with_resize(image, max_size_mb=4.5):
211
+ """Encode an image in base64, resizing if necessary."""
212
+ max_bytes = max_size_mb * 1024 * 1024
213
+ img_byte_arr = io.BytesIO()
214
+ image.save(img_byte_arr, format='PNG')
215
+ current_size = len(img_byte_arr.getvalue())
216
+ if current_size > max_bytes:
217
+ scale_factor = (max_bytes / current_size) ** 0.5
218
+ new_width = int(image.width * scale_factor)
219
+ new_height = int(image.height * scale_factor)
220
+ resized_image = image.resize((new_width, new_height), Image.LANCZOS)
221
+ img_byte_arr = io.BytesIO()
222
+ resized_image.save(img_byte_arr, format='PNG', optimize=True)
223
+ print(f"Image resized from {current_size/1024/1024:.2f}MB to {len(img_byte_arr.getvalue())/1024/1024:.2f}MB")
224
+ image = resized_image
225
+ else:
226
+ print(f"Image size acceptable: {current_size/1024/1024:.2f}MB")
227
+ buffer = io.BytesIO()
228
+ image.save(buffer, format="PNG", optimize=True)
229
+ return base64.b64encode(buffer.getvalue()).decode("utf-8")
230
+
231
+ # Core Analysis Functions
232
+ def analyze_dashboard_section(client, model, section_number, total_sections, image_section, full_text, language, goal_description=None):
233
+ """Analyze a vertical section of the dashboard in the specified language."""
234
+ print(f"Analyzing section {section_number}/{total_sections} in {language['name']} using {model}...")
235
+ try:
236
+ encoded_image = encode_image_with_resize(image_section)
237
+ except Exception as e:
238
+ print(f"Error encoding section {section_number}: {str(e)}")
239
+ return f"Error analyzing section {section_number}: {str(e)}"
240
+
241
+ section_prompt = f"""
242
+ Act as a senior data analyst examining this dashboard section for Customer Experience purpose.\n
243
+ Your analysis will be shared with top executives to inform about Customer Experience improvements and customer satisfaction level.\n
244
+ # Dashboard Analysis - Section {section_number} of {total_sections}\n
245
+ You are analyzing section {section_number} of {total_sections} of a long vertical dashboard. This is part of a broader analysis.\n
246
+ {f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
247
+ For this specific section:\n
248
+ 1. Describe what these visualizations show, including their type (e.g., bar chart, line graph) and the data they represent\n
249
+ 2. Quantitatively analyze the data, noting specific values, percentages, and numeric trends\n
250
+ 3. Identify significant patterns, anomalies, or outliers visible in the data\n
251
+ 4. Provide 2-3 actionable insights based on this analysis, explaining their business implications\n
252
+ 5. Suggest possible reasons for any notable trends or unexpected findings\n
253
+ Focus exclusively on the visible section. Don't reference or speculate about unseen dashboard elements.\n
254
+ Answer completely in {language['name']}.\n\n
255
+ # Text extracted from the complete dashboard:\n
256
+ {full_text[:10000]}
257
+
258
+ # Image of this dashboard section:
259
+ [BASE64 IMAGE: {encoded_image[:20]}...]
260
+ This is a dashboard visualization showing various metrics and charts. Please analyze the content visible in this image.
261
+ """
262
+
263
+ try:
264
+ response = client.messages_create(
265
+ model=model,
266
+ messages=[{"role": "user", "content": section_prompt}],
267
+ system=language['system_prompt'],
268
+ temperature=0.1,
269
+ max_tokens=10000
270
+ )
271
+ return response.content[0].text
272
+ except Exception as e:
273
+ print(f"Error analyzing section {section_number}: {str(e)}")
274
+ return f"Error analyzing section {section_number}: {str(e)}"
275
+
276
+ def create_comprehensive_report(client, model, section_analyses, full_text, language, goal_description=None):
277
+ """Create a unified comprehensive report based on individual section analyses."""
278
+ print(f"Generating final comprehensive report in {language['name']} using {model}...")
279
+ comprehensive_prompt = f"""
280
+ # Comprehensive Dashboard Analysis Request
281
+ You have analyzed a long vertical dashboard in multiple sections. Now you need to create a unified and coherent report based on all the partial analyses.\n
282
+ {f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
283
+ Here are the analyses of the individual dashboard sections:\n
284
+ {section_analyses}\n\n
285
+ Based on these partial analyses, generate a professional, structured, and coherent report that includes:\n
286
+ 1. Executive Summary - Include key metrics, major findings, and critical recommendations (limit to 1 page equivalent)\n
287
+ 2. Dashboard Performance Overview - Add a section that evaluates the overall health metrics before diving into categories\n
288
+ 3 Detailed Analysis by Category - Keep this, it's essential\n
289
+ 4 Trend Analysis - Broaden from just temporal to include cross-category patterns\n
290
+ 5 Critical Issues and Opportunities - Combine anomalies with positive outliers to provide balanced insights\n
291
+ 6 Strategic Implications and Recommendations - Consolidate your insights and recommendations into a single, stronger section\n
292
+ 7 Implementation Roadmap - Convert your conclusions into a prioritized action plan with timeframes\n
293
+ 8 Appendix: Monitoring Improvements - Move the monitoring suggestions to an appendix unless they're a primary focus\n\n
294
+ Integrate information from all sections to create a coherent and complete report.\n\n
295
+ # Text extracted from the complete dashboard:\n
296
+ {full_text[:10000]}
297
+ """
298
+ try:
299
+ response = client.messages_create(
300
+ model=model,
301
+ messages=[{"role": "user", "content": comprehensive_prompt}],
302
+ system=language['system_prompt'],
303
+ temperature=0.1,
304
+ max_tokens=10000
305
+ )
306
+ return response.content[0].text
307
+ except Exception as e:
308
+ print(f"Error creating comprehensive report: {str(e)}")
309
+ return f"Error creating comprehensive report: {str(e)}"
310
+
311
+ def create_multi_dashboard_comparative_report(client, model, individual_reports, language, goal_description=None):
312
+ """Create a comparative report analyzing multiple dashboards together."""
313
+ print(f"Generating comparative report for multiple dashboards in {language['name']} using {model}...")
314
+ comparative_prompt = f"""
315
+ # Multi-Dashboard Comparative Analysis Request
316
+ You have analyzed multiple dashboards individually. Now you need to create a comparative analysis report that identifies patterns, similarities, differences, and insights across all dashboards.
317
+ {f"The analysis objective is: {goal_description}" if goal_description else ""}
318
+ Here are the analyses of the individual dashboards:
319
+ {individual_reports}
320
+ Based on these individual analyses, generate a professional, structured comparative report that includes:
321
+ 1. Executive Overview of All Dashboards
322
+ 2. Comparative Analysis of Key Metrics
323
+ 3. Cross-Dashboard Patterns and Trends
324
+ 4. Notable Differences Between Dashboards
325
+ 5. Integrated Insights from All Sources
326
+ 6. Comprehensive Strategic Recommendations
327
+ 7. Suggestions for Cross-Dashboard Monitoring Improvements
328
+ 8. Conclusions and Integrated Next Steps
329
+ Integrate information from all dashboards to create a coherent comparative report.
330
+ """
331
+ try:
332
+ response = client.messages_create(
333
+ model=model,
334
+ messages=[{"role": "user", "content": comparative_prompt}],
335
+ system=language['system_prompt'],
336
+ temperature=0.1,
337
+ max_tokens=12000
338
+ )
339
+ return response.content[0].text
340
+ except Exception as e:
341
+ print(f"Error creating comparative report: {str(e)}")
342
+ return f"Error creating comparative report: {str(e)}"
343
+
344
+ def markdown_to_pdf(markdown_content, output_filename, language):
345
+ """Convert Markdown content to a well-formatted PDF."""
346
+ print(f"Converting Markdown report to PDF in {language['name']}...")
347
+ css = CSS(string='''
348
+ @page { margin: 1.5cm; }
349
+ body { font-family: Arial, sans-serif; line-height: 1.5; font-size: 11pt; }
350
+ h1 { color: #2c3e50; font-size: 22pt; margin-top: 1cm; margin-bottom: 0.5cm; page-break-after: avoid; }
351
+ h2 { color: #3498db; font-size: 16pt; margin-top: 0.8cm; margin-bottom: 0.3cm; page-break-after: avoid; }
352
+ p { margin-bottom: 0.3cm; text-align: justify; }
353
+ ''')
354
+ today = time.strftime("%d/%m/%Y")
355
+ cover_page = f"""
356
+ <div style="text-align: center; height: 100vh; display: flex; flex-direction: column; justify-content: center; align-items: center;">
357
+ <h1 style="font-size: 26pt; color: #2c3e50;">{language['report_title']}</h1>
358
+ <h2 style="font-size: 14pt; color: #7f8c8d;">{language['report_subtitle']}</h2>
359
+ <p style="font-size: 12pt; color: #7f8c8d;">{language['date_label']}: {today}</p>
360
+ </div>
361
+ <div style="page-break-after: always;"></div>
362
+ """
363
+ html_content = markdown.markdown(markdown_content, extensions=['tables', 'fenced_code'])
364
+ full_html = f"""
365
+ <!DOCTYPE html>
366
+ <html lang="{language['code']}">
367
+ <head><meta charset="UTF-8"><title>{language['report_title']}</title></head>
368
+ <body>{cover_page}{html_content}</body>
369
+ </html>
370
+ """
371
+ font_config = FontConfiguration()
372
+ HTML(string=full_html).write_pdf(output_filename, stylesheets=[css], font_config=font_config)
373
+ print(f"PDF created successfully: {output_filename}")
374
+ return output_filename
375
+
376
+ def analyze_vertical_dashboard(client, model, pdf_bytes, language, goal_description=None, num_sections=4, dashboard_index=None):
377
+ """Analyze a vertical dashboard by dividing it into sections."""
378
+ dashboard_marker = f" {dashboard_index}" if dashboard_index is not None else ""
379
+ total_dashboards = progress_tracker.total_dashboards if hasattr(progress_tracker, 'total_dashboards') else 1
380
+ dashboard_progress_base = ((dashboard_index - 1) / total_dashboards * 100) if dashboard_index is not None else 0
381
+ dashboard_progress_step = (100 / total_dashboards) if total_dashboards > 0 else 100
382
+
383
+ progress_tracker.update(dashboard_progress_base, f"πŸ–ΌοΈ Analyzing dashboard{dashboard_marker}...")
384
+ print(f"πŸ–ΌοΈ Analyzing dashboard{dashboard_marker}...")
385
+
386
+ progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.1, f"πŸ“„ Extracting text from dashboard{dashboard_marker}...")
387
+ print(f"πŸ“„ Extracting full text from PDF...")
388
+ full_text = extract_text_from_pdf(pdf_bytes)
389
+ if not full_text or len(full_text.strip()) < 100:
390
+ print("⚠️ Limited text extracted from PDF. Analysis will rely primarily on images.")
391
+ else:
392
+ print(f"βœ… Extracted {len(full_text)} characters of text from PDF.")
393
+
394
+ progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.2, f"πŸ–ΌοΈ Converting dashboard{dashboard_marker} to images...")
395
+ print("πŸ–ΌοΈ Converting PDF to images...")
396
+ try:
397
+ pdf_images = convert_from_bytes(pdf_bytes, dpi=150)
398
+ if not pdf_images:
399
+ print("❌ Unable to convert PDF to images.")
400
+ return None, "Error: Unable to convert PDF to images."
401
+ print(f"βœ… PDF converted to {len(pdf_images)} image pages.")
402
+ main_image = pdf_images[0]
403
+ print(f"Main image size: {main_image.width}x{main_image.height} pixels")
404
+
405
+ progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.3, f"Dividing dashboard{dashboard_marker} into {num_sections} sections...")
406
+ print(f"Dividing image into {num_sections} vertical sections...")
407
+ image_sections = divide_image_vertically(main_image, num_sections)
408
+ print(f"βœ… Image divided into {len(image_sections)} sections.")
409
+ except Exception as e:
410
+ print(f"❌ Error converting or dividing PDF: {str(e)}")
411
+ return None, f"Error: {str(e)}"
412
+
413
+ section_analyses = []
414
+ section_progress_step = dashboard_progress_step * 0.4 / len(image_sections)
415
+
416
+ for i, section in enumerate(image_sections):
417
+ section_progress = dashboard_progress_base + dashboard_progress_step * 0.3 + section_progress_step * i
418
+ progress_tracker.update(section_progress, f"Analyzing section {i+1}/{len(image_sections)} of dashboard{dashboard_marker}...")
419
+
420
+ print(f"\n{'='*50}")
421
+ print(f"Processing section {i+1}/{len(image_sections)}...")
422
+ section_result = analyze_dashboard_section(
423
+ client,
424
+ model,
425
+ i+1,
426
+ len(image_sections),
427
+ section,
428
+ full_text,
429
+ language,
430
+ goal_description
431
+ )
432
+ if section_result:
433
+ section_analyses.append(f"\n## {language['section_title']} {i+1}\n{section_result}")
434
+ print(f"βœ… Analysis of section {i+1} completed.")
435
+ else:
436
+ section_analyses.append(f"\n## {language['section_title']} {i+1}\nAnalysis not available for this section.")
437
+ print(f"⚠️ Analysis of section {i+1} not available.")
438
+
439
+ progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.7, f"Generating final report for dashboard{dashboard_marker}...")
440
+ print("\n" + "="*50)
441
+ print(f"All section analyses completed. Generating report...")
442
+ combined_sections = "\n".join(section_analyses)
443
+
444
+ # If dashboard index is provided, add a header for the dashboard
445
+ if dashboard_index is not None:
446
+ dashboard_header = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n"
447
+ combined_sections = dashboard_header + combined_sections
448
+
449
+ final_report = create_comprehensive_report(client, model, combined_sections, full_text, language, goal_description)
450
+
451
+ # If dashboard index is provided, prepend it to the report
452
+ if dashboard_index is not None and dashboard_index > 1:
453
+ # Only add header if it doesn't already exist (might have been added by Claude)
454
+ if not final_report.startswith(f"# {language['multi_doc_title'].format(index=dashboard_index)}"):
455
+ final_report = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n{final_report}"
456
+
457
+ progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.9, f"Finalizing dashboard{dashboard_marker} analysis...")
458
+ return final_report, combined_sections
459
+
460
+ def get_available_models(api_key):
461
+ """Get available models from OpenRouter API."""
462
+ try:
463
+ headers = {
464
+ "Authorization": f"Bearer {api_key}",
465
+ "Content-Type": "application/json"
466
+ }
467
+ response = requests.get("https://openrouter.ai/api/v1/models", headers=headers)
468
+ if response.status_code == 200:
469
+ models_data = response.json()
470
+ available_models = [model["id"] for model in models_data.get("data", [])]
471
+ # Sort models to keep popular ones at the top
472
+ sorted_models = [model for model in OPENROUTER_MODELS if model in available_models]
473
+ # Add any additional models not in our predefined list
474
+ additional_models = [model for model in available_models if model not in OPENROUTER_MODELS]
475
+ additional_models.sort()
476
+ all_models = sorted_models + additional_models
477
+ return all_models
478
+ else:
479
+ print(f"Error fetching models: {response.status_code}")
480
+ return OPENROUTER_MODELS
481
+ except Exception as e:
482
+ print(f"Error fetching models: {str(e)}")
483
+ return OPENROUTER_MODELS
484
+
485
+ def process_multiple_dashboards(api_key, pdf_files, language_code="it", goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
486
+ """Process multiple dashboard PDFs and create individual and comparative reports."""
487
+ # Start progress tracking
488
+ progress_tracker.start_processing()
489
+ progress_tracker.total_dashboards = len(pdf_files)
490
+
491
+ # Step 1: Initialize language settings and API client
492
+ progress_tracker.update(1, "Initializing analysis...")
493
+ language = None
494
+ for lang_key, lang_data in SUPPORTED_LANGUAGES.items():
495
+ if lang_data['code'] == language_code:
496
+ language = lang_data
497
+ break
498
+ if not language:
499
+ print(f"⚠️ Language '{language_code}' not supported. Using Italian as fallback.")
500
+ language = SUPPORTED_LANGUAGES['italiano']
501
+ print(f"🌐 Selected language: {language['name']}")
502
+
503
+ if not api_key:
504
+ progress_tracker.update(100, "⚠️ Error: API key not provided.")
505
+ progress_tracker.end_processing()
506
+ print("⚠️ Error: API key not provided.")
507
+ return None, None, "Error: API key not provided."
508
+
509
+ try:
510
+ client = OpenRouterClient(api_key=api_key)
511
+ print("βœ… OpenRouter client initialized successfully.")
512
+ except Exception as e:
513
+ progress_tracker.update(100, f"❌ Error initializing client: {str(e)}")
514
+ progress_tracker.end_processing()
515
+ print(f"❌ Error initializing client: {str(e)}")
516
+ return None, None, f"Error: {str(e)}"
517
+
518
+ # Determine which model to use
519
+ model = custom_model if model_name == "custom" and custom_model else model_name
520
+ print(f"πŸ€– Using model: {model}")
521
+
522
+ # Step 2: Process each dashboard individually
523
+ individual_reports = []
524
+ individual_analyses = []
525
+
526
+ for i, pdf_bytes in enumerate(pdf_files):
527
+ dashboard_progress_base = (i / len(pdf_files) * 80) # 80% of progress for dashboard analysis
528
+ progress_tracker.update(dashboard_progress_base, f"Processing dashboard {i+1}/{len(pdf_files)}...")
529
+ print(f"\n{'#'*60}")
530
+ print(f"Processing dashboard {i+1}/{len(pdf_files)}...")
531
+
532
+ report, analysis = analyze_vertical_dashboard(
533
+ client=client,
534
+ model=model,
535
+ pdf_bytes=pdf_bytes,
536
+ language=language,
537
+ goal_description=goal_description,
538
+ num_sections=num_sections,
539
+ dashboard_index=i+1
540
+ )
541
+
542
+ if report:
543
+ individual_reports.append(report)
544
+ individual_analyses.append(analysis)
545
+ print(f"βœ… Analysis of dashboard {i+1} completed.")
546
+ else:
547
+ print(f"❌ Analysis of dashboard {i+1} failed.")
548
+
549
+ # For Hugging Face Space: use tmp directory for file output
550
+ tmp_dir = "/tmp"
551
+ if not os.path.exists(tmp_dir):
552
+ os.makedirs(tmp_dir, exist_ok=True)
553
+
554
+ # Step 3: Generate output files
555
+ progress_tracker.update(80, "Generating output files...")
556
+ timestamp = time.strftime("%Y%m%d_%H%M%S")
557
+ output_files = []
558
+
559
+ # Create individual report files
560
+ for i, report in enumerate(individual_reports):
561
+ file_progress = 80 + (i / len(individual_reports) * 10) # 10% for creating files
562
+ progress_tracker.update(file_progress, f"Creating files for dashboard {i+1}...")
563
+
564
+ md_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.md")
565
+ pdf_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.pdf")
566
+
567
+ with open(md_filename, 'w', encoding='utf-8') as f:
568
+ f.write(report)
569
+ output_files.append(md_filename)
570
+
571
+ try:
572
+ pdf_path = markdown_to_pdf(report, pdf_filename, language)
573
+ output_files.append(pdf_filename)
574
+ except Exception as e:
575
+ print(f"⚠️ Error converting dashboard {i+1} to PDF: {str(e)}")
576
+
577
+ # If there are multiple dashboards, create a comparative report
578
+ if len(individual_reports) > 1:
579
+ progress_tracker.update(90, "Creating comparative analysis...")
580
+ print("\n" + "#"*60)
581
+ print("Creating comparative analysis of all dashboards...")
582
+
583
+ # Combined report content
584
+ all_reports_content = "\n\n".join(individual_reports)
585
+
586
+ # Generate comparative analysis
587
+ comparative_report = create_multi_dashboard_comparative_report(
588
+ client=client,
589
+ model=model,
590
+ individual_reports=all_reports_content,
591
+ language=language,
592
+ goal_description=goal_description
593
+ )
594
+
595
+ # Save comparative report
596
+ progress_tracker.update(95, "Saving comparative analysis files...")
597
+ comparative_md = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.md")
598
+ comparative_pdf = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.pdf")
599
+
600
+ with open(comparative_md, 'w', encoding='utf-8') as f:
601
+ f.write(comparative_report)
602
+ output_files.append(comparative_md)
603
+
604
+ try:
605
+ pdf_path = markdown_to_pdf(comparative_report, comparative_pdf, language)
606
+ output_files.append(comparative_pdf)
607
+ except Exception as e:
608
+ print(f"⚠️ Error converting comparative report to PDF: {str(e)}")
609
+
610
+ # Complete progress tracking
611
+ progress_tracker.update(100, "βœ… Analysis completed successfully!")
612
+ progress_tracker.end_processing()
613
+
614
+ # Return the combined report content and all output files
615
+ combined_content = "\n\n---\n\n".join(individual_reports)
616
+ if len(individual_reports) > 1 and 'comparative_report' in locals():
617
+ combined_content += f"\n\n{'='*80}\n\n# COMPARATIVE ANALYSIS\n\n{comparative_report}"