fedec65 commited on
Commit
d4539da
·
verified ·
1 Parent(s): 37bc974

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -620
app.py CHANGED
@@ -1,621 +1,9 @@
1
- """
2
- Dashboard Narrator - Powered by OpenRouter.ai
3
- A tool to analyze dashboard PDFs and generate comprehensive reports.
4
- """
5
-
6
- # Import required libraries
7
- import os
8
- import time
9
- import threading
10
- import io
11
- import base64
12
- import json
13
- import requests
14
- from PyPDF2 import PdfReader
15
- from PIL import Image
16
- import markdown
17
- from weasyprint import HTML, CSS
18
- from weasyprint.text.fonts import FontConfiguration
19
- from pdf2image import convert_from_bytes
20
- import gradio as gr
21
-
22
- # Create a global progress tracker
23
- class ProgressTracker:
24
- def __init__(self):
25
- self.progress = 0
26
- self.message = "Ready"
27
- self.is_processing = False
28
- self.lock = threading.Lock()
29
-
30
- def update(self, progress, message="Processing..."):
31
- with self.lock:
32
- self.progress = progress
33
- self.message = message
34
-
35
- def get_status(self):
36
- with self.lock:
37
- return f"{self.message} ({self.progress:.1f}%)"
38
-
39
- def start_processing(self):
40
- with self.lock:
41
- self.is_processing = True
42
- self.progress = 0
43
- self.message = "Starting..."
44
-
45
- def end_processing(self):
46
- with self.lock:
47
- self.is_processing = False
48
- self.progress = 100
49
- self.message = "Complete"
50
-
51
- # Create a global instance
52
- progress_tracker = ProgressTracker()
53
- output_status = None
54
-
55
- # Function to update the Gradio interface with progress
56
- def update_progress():
57
- global output_status
58
- while progress_tracker.is_processing:
59
- status = progress_tracker.get_status()
60
- if output_status is not None:
61
- output_status.update(value=status)
62
- time.sleep(0.5)
63
- return
64
-
65
- # OpenRouter Client for making API calls
66
- class OpenRouterClient:
67
- def __init__(self, api_key):
68
- self.api_key = api_key
69
- self.base_url = "https://openrouter.ai/api/v1"
70
-
71
- def messages_create(self, model, messages, system=None, temperature=0.7, max_tokens=None):
72
- """Send messages to the OpenRouter API and return the response"""
73
- url = f"{self.base_url}/chat/completions"
74
-
75
- headers = {
76
- "Authorization": f"Bearer {self.api_key}",
77
- "Content-Type": "application/json"
78
- }
79
-
80
- payload = {
81
- "model": model,
82
- "messages": messages,
83
- "temperature": temperature,
84
- }
85
-
86
- # Add system message if provided
87
- if system:
88
- payload["messages"].insert(0, {"role": "system", "content": system})
89
-
90
- # Add max_tokens if provided
91
- if max_tokens:
92
- payload["max_tokens"] = max_tokens
93
-
94
- try:
95
- response = requests.post(url, headers=headers, json=payload)
96
- response.raise_for_status() # Raise an exception for HTTP errors
97
-
98
- result = response.json()
99
-
100
- # Format the response to match the expected structure
101
- formatted_response = type('obj', (object,), {
102
- 'content': [
103
- type('obj', (object,), {
104
- 'text': result['choices'][0]['message']['content']
105
- })
106
- ]
107
- })
108
-
109
- return formatted_response
110
-
111
- except requests.exceptions.RequestException as e:
112
- print(f"API request error: {str(e)}")
113
- if hasattr(e, 'response') and e.response:
114
- print(f"Response: {e.response.text}")
115
- raise
116
-
117
- # Supported languages configuration
118
- SUPPORTED_LANGUAGES = {
119
- "italiano": {
120
- "code": "it",
121
- "name": "Italiano",
122
- "report_title": "Analisi Dashboard",
123
- "report_subtitle": "Report Dettagliato",
124
- "date_label": "Data",
125
- "system_prompt": "Sei un esperto analista di business intelligence specializzato nell'interpretazione di dashboard e dati visualizzati. Fornisci analisi in italiano approfondite e insight actionable basati sui dati forniti.",
126
- "section_title": "ANALISI SEZIONE",
127
- "multi_doc_title": "ANALISI DASHBOARD {index}"
128
- },
129
- "english": {
130
- "code": "en",
131
- "name": "English",
132
- "report_title": "Dashboard Analysis",
133
- "report_subtitle": "Detailed Report",
134
- "date_label": "Date",
135
- "system_prompt": "You are an expert business intelligence analyst specialized in interpreting dashboards and data visualizations. Provide in-depth analysis and actionable insights based on the data provided.",
136
- "section_title": "SECTION ANALYSIS",
137
- "multi_doc_title": "DASHBOARD {index} ANALYSIS"
138
- },
139
- "français": {
140
- "code": "fr",
141
- "name": "Français",
142
- "report_title": "Analyse de Tableau de Bord",
143
- "report_subtitle": "Rapport Détaillé",
144
- "date_label": "Date",
145
- "system_prompt": "Vous êtes un analyste expert en business intelligence spécialisé dans l'interprétation des tableaux de bord et des visualisations de données. Fournissez en français une analyse approfondie et des insights actionnables basés sur les données fournies.",
146
- "section_title": "ANALYSE DE SECTION",
147
- "multi_doc_title": "ANALYSE DU TABLEAU DE BORD {index}"
148
- },
149
- "español": {
150
- "code": "es",
151
- "name": "Español",
152
- "report_title": "Análisis de Dashboard",
153
- "report_subtitle": "Informe Detallado",
154
- "date_label": "Fecha",
155
- "system_prompt": "Eres un analista experto en inteligencia empresarial especializado en interpretar dashboards y visualizaciones de datos. Proporciona en español un análisis en profundidad e insights accionables basados en los datos proporcionados.",
156
- "section_title": "ANÁLISIS DE SECCIÓN",
157
- "multi_doc_title": "ANÁLISIS DEL DASHBOARD {index}"
158
- },
159
- "deutsch": {
160
- "code": "de",
161
- "name": "Deutsch",
162
- "report_title": "Dashboard-Analyse",
163
- "report_subtitle": "Detaillierter Bericht",
164
- "date_label": "Datum",
165
- "system_prompt": "Sie sind ein Experte für Business Intelligence-Analyse, der auf die Interpretation von Dashboards und Datenvisualisierungen spezialisiert ist. Bieten Sie auf Deutsch eine eingehende Analyse und umsetzbare Erkenntnisse auf Grundlage der bereitgestellten Daten.",
166
- "section_title": "ABSCHNITTSANALYSE",
167
- "multi_doc_title": "DASHBOARD-ANALYSE {index}"
168
- }
169
- }
170
-
171
- # OpenRouter models
172
- DEFAULT_MODEL = "meta-llama/llama-4-scout:free"
173
- OPENROUTER_MODELS = [
174
- "meta-llama/llama-4-scout:free",
175
- "anthropic/claude-3-haiku:20240307",
176
- "anthropic/claude-3-sonnet:20240229",
177
- "anthropic/claude-3-opus:20240229",
178
- "google/gemini-pro-1.5:latest",
179
- "mistralai/mistral-large-latest"
180
- ]
181
-
182
- # Utility Functions
183
- def extract_text_from_pdf(pdf_bytes):
184
- """Extract text from a PDF file."""
185
- try:
186
- pdf_reader = PdfReader(io.BytesIO(pdf_bytes))
187
- text = ""
188
- for page_num in range(len(pdf_reader.pages)):
189
- extracted = pdf_reader.pages[page_num].extract_text()
190
- if extracted:
191
- text += extracted + "\n"
192
- return text
193
- except Exception as e:
194
- print(f"Error extracting text from PDF: {str(e)}")
195
- return ""
196
-
197
- def divide_image_vertically(image, num_sections):
198
- """Divide an image vertically into sections."""
199
- width, height = image.size
200
- section_height = height // num_sections
201
- sections = []
202
- for i in range(num_sections):
203
- top = i * section_height
204
- bottom = height if i == num_sections - 1 else (i + 1) * section_height
205
- section = image.crop((0, top, width, bottom))
206
- sections.append(section)
207
- print(f"Section {i+1}: size {section.width}x{section.height} pixels")
208
- return sections
209
-
210
- def encode_image_with_resize(image, max_size_mb=4.5):
211
- """Encode an image in base64, resizing if necessary."""
212
- max_bytes = max_size_mb * 1024 * 1024
213
- img_byte_arr = io.BytesIO()
214
- image.save(img_byte_arr, format='PNG')
215
- current_size = len(img_byte_arr.getvalue())
216
- if current_size > max_bytes:
217
- scale_factor = (max_bytes / current_size) ** 0.5
218
- new_width = int(image.width * scale_factor)
219
- new_height = int(image.height * scale_factor)
220
- resized_image = image.resize((new_width, new_height), Image.LANCZOS)
221
- img_byte_arr = io.BytesIO()
222
- resized_image.save(img_byte_arr, format='PNG', optimize=True)
223
- print(f"Image resized from {current_size/1024/1024:.2f}MB to {len(img_byte_arr.getvalue())/1024/1024:.2f}MB")
224
- image = resized_image
225
- else:
226
- print(f"Image size acceptable: {current_size/1024/1024:.2f}MB")
227
- buffer = io.BytesIO()
228
- image.save(buffer, format="PNG", optimize=True)
229
- return base64.b64encode(buffer.getvalue()).decode("utf-8")
230
-
231
- # Core Analysis Functions
232
- def analyze_dashboard_section(client, model, section_number, total_sections, image_section, full_text, language, goal_description=None):
233
- """Analyze a vertical section of the dashboard in the specified language."""
234
- print(f"Analyzing section {section_number}/{total_sections} in {language['name']} using {model}...")
235
- try:
236
- encoded_image = encode_image_with_resize(image_section)
237
- except Exception as e:
238
- print(f"Error encoding section {section_number}: {str(e)}")
239
- return f"Error analyzing section {section_number}: {str(e)}"
240
-
241
- section_prompt = f"""
242
- Act as a senior data analyst examining this dashboard section for Customer Experience purpose.\n
243
- Your analysis will be shared with top executives to inform about Customer Experience improvements and customer satisfaction level.\n
244
- # Dashboard Analysis - Section {section_number} of {total_sections}\n
245
- You are analyzing section {section_number} of {total_sections} of a long vertical dashboard. This is part of a broader analysis.\n
246
- {f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
247
- For this specific section:\n
248
- 1. Describe what these visualizations show, including their type (e.g., bar chart, line graph) and the data they represent\n
249
- 2. Quantitatively analyze the data, noting specific values, percentages, and numeric trends\n
250
- 3. Identify significant patterns, anomalies, or outliers visible in the data\n
251
- 4. Provide 2-3 actionable insights based on this analysis, explaining their business implications\n
252
- 5. Suggest possible reasons for any notable trends or unexpected findings\n
253
- Focus exclusively on the visible section. Don't reference or speculate about unseen dashboard elements.\n
254
- Answer completely in {language['name']}.\n\n
255
- # Text extracted from the complete dashboard:\n
256
- {full_text[:10000]}
257
-
258
- # Image of this dashboard section:
259
- [BASE64 IMAGE: {encoded_image[:20]}...]
260
- This is a dashboard visualization showing various metrics and charts. Please analyze the content visible in this image.
261
- """
262
-
263
- try:
264
- response = client.messages_create(
265
- model=model,
266
- messages=[{"role": "user", "content": section_prompt}],
267
- system=language['system_prompt'],
268
- temperature=0.1,
269
- max_tokens=10000
270
- )
271
- return response.content[0].text
272
- except Exception as e:
273
- print(f"Error analyzing section {section_number}: {str(e)}")
274
- return f"Error analyzing section {section_number}: {str(e)}"
275
-
276
- def create_comprehensive_report(client, model, section_analyses, full_text, language, goal_description=None):
277
- """Create a unified comprehensive report based on individual section analyses."""
278
- print(f"Generating final comprehensive report in {language['name']} using {model}...")
279
- comprehensive_prompt = f"""
280
- # Comprehensive Dashboard Analysis Request
281
- You have analyzed a long vertical dashboard in multiple sections. Now you need to create a unified and coherent report based on all the partial analyses.\n
282
- {f"The analysis objective is: {goal_description}" if goal_description else ""}\n\n
283
- Here are the analyses of the individual dashboard sections:\n
284
- {section_analyses}\n\n
285
- Based on these partial analyses, generate a professional, structured, and coherent report that includes:\n
286
- 1. Executive Summary - Include key metrics, major findings, and critical recommendations (limit to 1 page equivalent)\n
287
- 2. Dashboard Performance Overview - Add a section that evaluates the overall health metrics before diving into categories\n
288
- 3 Detailed Analysis by Category - Keep this, it's essential\n
289
- 4 Trend Analysis - Broaden from just temporal to include cross-category patterns\n
290
- 5 Critical Issues and Opportunities - Combine anomalies with positive outliers to provide balanced insights\n
291
- 6 Strategic Implications and Recommendations - Consolidate your insights and recommendations into a single, stronger section\n
292
- 7 Implementation Roadmap - Convert your conclusions into a prioritized action plan with timeframes\n
293
- 8 Appendix: Monitoring Improvements - Move the monitoring suggestions to an appendix unless they're a primary focus\n\n
294
- Integrate information from all sections to create a coherent and complete report.\n\n
295
- # Text extracted from the complete dashboard:\n
296
- {full_text[:10000]}
297
- """
298
- try:
299
- response = client.messages_create(
300
- model=model,
301
- messages=[{"role": "user", "content": comprehensive_prompt}],
302
- system=language['system_prompt'],
303
- temperature=0.1,
304
- max_tokens=10000
305
- )
306
- return response.content[0].text
307
- except Exception as e:
308
- print(f"Error creating comprehensive report: {str(e)}")
309
- return f"Error creating comprehensive report: {str(e)}"
310
-
311
- def create_multi_dashboard_comparative_report(client, model, individual_reports, language, goal_description=None):
312
- """Create a comparative report analyzing multiple dashboards together."""
313
- print(f"Generating comparative report for multiple dashboards in {language['name']} using {model}...")
314
- comparative_prompt = f"""
315
- # Multi-Dashboard Comparative Analysis Request
316
- You have analyzed multiple dashboards individually. Now you need to create a comparative analysis report that identifies patterns, similarities, differences, and insights across all dashboards.
317
- {f"The analysis objective is: {goal_description}" if goal_description else ""}
318
- Here are the analyses of the individual dashboards:
319
- {individual_reports}
320
- Based on these individual analyses, generate a professional, structured comparative report that includes:
321
- 1. Executive Overview of All Dashboards
322
- 2. Comparative Analysis of Key Metrics
323
- 3. Cross-Dashboard Patterns and Trends
324
- 4. Notable Differences Between Dashboards
325
- 5. Integrated Insights from All Sources
326
- 6. Comprehensive Strategic Recommendations
327
- 7. Suggestions for Cross-Dashboard Monitoring Improvements
328
- 8. Conclusions and Integrated Next Steps
329
- Integrate information from all dashboards to create a coherent comparative report.
330
- """
331
- try:
332
- response = client.messages_create(
333
- model=model,
334
- messages=[{"role": "user", "content": comparative_prompt}],
335
- system=language['system_prompt'],
336
- temperature=0.1,
337
- max_tokens=12000
338
- )
339
- return response.content[0].text
340
- except Exception as e:
341
- print(f"Error creating comparative report: {str(e)}")
342
- return f"Error creating comparative report: {str(e)}"
343
-
344
- def markdown_to_pdf(markdown_content, output_filename, language):
345
- """Convert Markdown content to a well-formatted PDF."""
346
- print(f"Converting Markdown report to PDF in {language['name']}...")
347
- css = CSS(string='''
348
- @page { margin: 1.5cm; }
349
- body { font-family: Arial, sans-serif; line-height: 1.5; font-size: 11pt; }
350
- h1 { color: #2c3e50; font-size: 22pt; margin-top: 1cm; margin-bottom: 0.5cm; page-break-after: avoid; }
351
- h2 { color: #3498db; font-size: 16pt; margin-top: 0.8cm; margin-bottom: 0.3cm; page-break-after: avoid; }
352
- p { margin-bottom: 0.3cm; text-align: justify; }
353
- ''')
354
- today = time.strftime("%d/%m/%Y")
355
- cover_page = f"""
356
- <div style="text-align: center; height: 100vh; display: flex; flex-direction: column; justify-content: center; align-items: center;">
357
- <h1 style="font-size: 26pt; color: #2c3e50;">{language['report_title']}</h1>
358
- <h2 style="font-size: 14pt; color: #7f8c8d;">{language['report_subtitle']}</h2>
359
- <p style="font-size: 12pt; color: #7f8c8d;">{language['date_label']}: {today}</p>
360
- </div>
361
- <div style="page-break-after: always;"></div>
362
- """
363
- html_content = markdown.markdown(markdown_content, extensions=['tables', 'fenced_code'])
364
- full_html = f"""
365
- <!DOCTYPE html>
366
- <html lang="{language['code']}">
367
- <head><meta charset="UTF-8"><title>{language['report_title']}</title></head>
368
- <body>{cover_page}{html_content}</body>
369
- </html>
370
- """
371
- font_config = FontConfiguration()
372
- HTML(string=full_html).write_pdf(output_filename, stylesheets=[css], font_config=font_config)
373
- print(f"PDF created successfully: {output_filename}")
374
- return output_filename
375
-
376
- def analyze_vertical_dashboard(client, model, pdf_bytes, language, goal_description=None, num_sections=4, dashboard_index=None):
377
- """Analyze a vertical dashboard by dividing it into sections."""
378
- dashboard_marker = f" {dashboard_index}" if dashboard_index is not None else ""
379
- total_dashboards = progress_tracker.total_dashboards if hasattr(progress_tracker, 'total_dashboards') else 1
380
- dashboard_progress_base = ((dashboard_index - 1) / total_dashboards * 100) if dashboard_index is not None else 0
381
- dashboard_progress_step = (100 / total_dashboards) if total_dashboards > 0 else 100
382
-
383
- progress_tracker.update(dashboard_progress_base, f"🖼️ Analyzing dashboard{dashboard_marker}...")
384
- print(f"🖼️ Analyzing dashboard{dashboard_marker}...")
385
-
386
- progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.1, f"📄 Extracting text from dashboard{dashboard_marker}...")
387
- print(f"📄 Extracting full text from PDF...")
388
- full_text = extract_text_from_pdf(pdf_bytes)
389
- if not full_text or len(full_text.strip()) < 100:
390
- print("⚠️ Limited text extracted from PDF. Analysis will rely primarily on images.")
391
- else:
392
- print(f"✅ Extracted {len(full_text)} characters of text from PDF.")
393
-
394
- progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.2, f"🖼️ Converting dashboard{dashboard_marker} to images...")
395
- print("🖼️ Converting PDF to images...")
396
- try:
397
- pdf_images = convert_from_bytes(pdf_bytes, dpi=150)
398
- if not pdf_images:
399
- print("❌ Unable to convert PDF to images.")
400
- return None, "Error: Unable to convert PDF to images."
401
- print(f"✅ PDF converted to {len(pdf_images)} image pages.")
402
- main_image = pdf_images[0]
403
- print(f"Main image size: {main_image.width}x{main_image.height} pixels")
404
-
405
- progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.3, f"Dividing dashboard{dashboard_marker} into {num_sections} sections...")
406
- print(f"Dividing image into {num_sections} vertical sections...")
407
- image_sections = divide_image_vertically(main_image, num_sections)
408
- print(f"✅ Image divided into {len(image_sections)} sections.")
409
- except Exception as e:
410
- print(f"❌ Error converting or dividing PDF: {str(e)}")
411
- return None, f"Error: {str(e)}"
412
-
413
- section_analyses = []
414
- section_progress_step = dashboard_progress_step * 0.4 / len(image_sections)
415
-
416
- for i, section in enumerate(image_sections):
417
- section_progress = dashboard_progress_base + dashboard_progress_step * 0.3 + section_progress_step * i
418
- progress_tracker.update(section_progress, f"Analyzing section {i+1}/{len(image_sections)} of dashboard{dashboard_marker}...")
419
-
420
- print(f"\n{'='*50}")
421
- print(f"Processing section {i+1}/{len(image_sections)}...")
422
- section_result = analyze_dashboard_section(
423
- client,
424
- model,
425
- i+1,
426
- len(image_sections),
427
- section,
428
- full_text,
429
- language,
430
- goal_description
431
- )
432
- if section_result:
433
- section_analyses.append(f"\n## {language['section_title']} {i+1}\n{section_result}")
434
- print(f"✅ Analysis of section {i+1} completed.")
435
- else:
436
- section_analyses.append(f"\n## {language['section_title']} {i+1}\nAnalysis not available for this section.")
437
- print(f"⚠️ Analysis of section {i+1} not available.")
438
-
439
- progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.7, f"Generating final report for dashboard{dashboard_marker}...")
440
- print("\n" + "="*50)
441
- print(f"All section analyses completed. Generating report...")
442
- combined_sections = "\n".join(section_analyses)
443
-
444
- # If dashboard index is provided, add a header for the dashboard
445
- if dashboard_index is not None:
446
- dashboard_header = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n"
447
- combined_sections = dashboard_header + combined_sections
448
-
449
- final_report = create_comprehensive_report(client, model, combined_sections, full_text, language, goal_description)
450
-
451
- # If dashboard index is provided, prepend it to the report
452
- if dashboard_index is not None and dashboard_index > 1:
453
- # Only add header if it doesn't already exist (might have been added by Claude)
454
- if not final_report.startswith(f"# {language['multi_doc_title'].format(index=dashboard_index)}"):
455
- final_report = f"# {language['multi_doc_title'].format(index=dashboard_index)}\n\n{final_report}"
456
-
457
- progress_tracker.update(dashboard_progress_base + dashboard_progress_step * 0.9, f"Finalizing dashboard{dashboard_marker} analysis...")
458
- return final_report, combined_sections
459
-
460
- def get_available_models(api_key):
461
- """Get available models from OpenRouter API."""
462
- try:
463
- headers = {
464
- "Authorization": f"Bearer {api_key}",
465
- "Content-Type": "application/json"
466
- }
467
- response = requests.get("https://openrouter.ai/api/v1/models", headers=headers)
468
- if response.status_code == 200:
469
- models_data = response.json()
470
- available_models = [model["id"] for model in models_data.get("data", [])]
471
- # Sort models to keep popular ones at the top
472
- sorted_models = [model for model in OPENROUTER_MODELS if model in available_models]
473
- # Add any additional models not in our predefined list
474
- additional_models = [model for model in available_models if model not in OPENROUTER_MODELS]
475
- additional_models.sort()
476
- all_models = sorted_models + additional_models
477
- return all_models
478
- else:
479
- print(f"Error fetching models: {response.status_code}")
480
- return OPENROUTER_MODELS
481
- except Exception as e:
482
- print(f"Error fetching models: {str(e)}")
483
- return OPENROUTER_MODELS
484
-
485
- def process_multiple_dashboards(api_key, pdf_files, language_code="it", goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
486
- """Process multiple dashboard PDFs and create individual and comparative reports."""
487
- # Start progress tracking
488
- progress_tracker.start_processing()
489
- progress_tracker.total_dashboards = len(pdf_files)
490
-
491
- # Step 1: Initialize language settings and API client
492
- progress_tracker.update(1, "Initializing analysis...")
493
- language = None
494
- for lang_key, lang_data in SUPPORTED_LANGUAGES.items():
495
- if lang_data['code'] == language_code:
496
- language = lang_data
497
- break
498
- if not language:
499
- print(f"⚠️ Language '{language_code}' not supported. Using Italian as fallback.")
500
- language = SUPPORTED_LANGUAGES['italiano']
501
- print(f"🌐 Selected language: {language['name']}")
502
-
503
- if not api_key:
504
- progress_tracker.update(100, "⚠️ Error: API key not provided.")
505
- progress_tracker.end_processing()
506
- print("⚠️ Error: API key not provided.")
507
- return None, None, "Error: API key not provided."
508
-
509
- try:
510
- client = OpenRouterClient(api_key=api_key)
511
- print("✅ OpenRouter client initialized successfully.")
512
- except Exception as e:
513
- progress_tracker.update(100, f"❌ Error initializing client: {str(e)}")
514
- progress_tracker.end_processing()
515
- print(f"❌ Error initializing client: {str(e)}")
516
- return None, None, f"Error: {str(e)}"
517
-
518
- # Determine which model to use
519
- model = custom_model if model_name == "custom" and custom_model else model_name
520
- print(f"🤖 Using model: {model}")
521
-
522
- # Step 2: Process each dashboard individually
523
- individual_reports = []
524
- individual_analyses = []
525
-
526
- for i, pdf_bytes in enumerate(pdf_files):
527
- dashboard_progress_base = (i / len(pdf_files) * 80) # 80% of progress for dashboard analysis
528
- progress_tracker.update(dashboard_progress_base, f"Processing dashboard {i+1}/{len(pdf_files)}...")
529
- print(f"\n{'#'*60}")
530
- print(f"Processing dashboard {i+1}/{len(pdf_files)}...")
531
-
532
- report, analysis = analyze_vertical_dashboard(
533
- client=client,
534
- model=model,
535
- pdf_bytes=pdf_bytes,
536
- language=language,
537
- goal_description=goal_description,
538
- num_sections=num_sections,
539
- dashboard_index=i+1
540
- )
541
-
542
- if report:
543
- individual_reports.append(report)
544
- individual_analyses.append(analysis)
545
- print(f"✅ Analysis of dashboard {i+1} completed.")
546
- else:
547
- print(f"❌ Analysis of dashboard {i+1} failed.")
548
-
549
- # For Hugging Face Space: use tmp directory for file output
550
- tmp_dir = "/tmp"
551
- if not os.path.exists(tmp_dir):
552
- os.makedirs(tmp_dir, exist_ok=True)
553
-
554
- # Step 3: Generate output files
555
- progress_tracker.update(80, "Generating output files...")
556
- timestamp = time.strftime("%Y%m%d_%H%M%S")
557
- output_files = []
558
-
559
- # Create individual report files
560
- for i, report in enumerate(individual_reports):
561
- file_progress = 80 + (i / len(individual_reports) * 10) # 10% for creating files
562
- progress_tracker.update(file_progress, f"Creating files for dashboard {i+1}...")
563
-
564
- md_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.md")
565
- pdf_filename = os.path.join(tmp_dir, f"dashboard_{i+1}_{language['code']}_{timestamp}.pdf")
566
-
567
- with open(md_filename, 'w', encoding='utf-8') as f:
568
- f.write(report)
569
- output_files.append(md_filename)
570
-
571
- try:
572
- pdf_path = markdown_to_pdf(report, pdf_filename, language)
573
- output_files.append(pdf_filename)
574
- except Exception as e:
575
- print(f"⚠️ Error converting dashboard {i+1} to PDF: {str(e)}")
576
-
577
- # If there are multiple dashboards, create a comparative report
578
- if len(individual_reports) > 1:
579
- progress_tracker.update(90, "Creating comparative analysis...")
580
- print("\n" + "#"*60)
581
- print("Creating comparative analysis of all dashboards...")
582
-
583
- # Combined report content
584
- all_reports_content = "\n\n".join(individual_reports)
585
-
586
- # Generate comparative analysis
587
- comparative_report = create_multi_dashboard_comparative_report(
588
- client=client,
589
- model=model,
590
- individual_reports=all_reports_content,
591
- language=language,
592
- goal_description=goal_description
593
- )
594
-
595
- # Save comparative report
596
- progress_tracker.update(95, "Saving comparative analysis files...")
597
- comparative_md = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.md")
598
- comparative_pdf = os.path.join(tmp_dir, f"comparative_analysis_{language['code']}_{timestamp}.pdf")
599
-
600
- with open(comparative_md, 'w', encoding='utf-8') as f:
601
- f.write(comparative_report)
602
- output_files.append(comparative_md)
603
-
604
- try:
605
- pdf_path = markdown_to_pdf(comparative_report, comparative_pdf, language)
606
- output_files.append(comparative_pdf)
607
- except Exception as e:
608
- print(f"⚠️ Error converting comparative report to PDF: {str(e)}")
609
-
610
- # Complete progress tracking
611
- progress_tracker.update(100, "✅ Analysis completed successfully!")
612
- progress_tracker.end_processing()
613
-
614
- # Return the combined report content and all output files
615
  combined_content = "\n\n---\n\n".join(individual_reports)
616
  if len(individual_reports) > 1 and 'comparative_report' in locals():
617
  combined_content += f"\n\n{'='*80}\n\n# COMPARATIVE ANALYSIS\n\n{comparative_report}"
618
- return combined_content, output_files, "✅ Analysis completed successfully!"
 
619
 
620
  # Wrapper function for Gradio interface
621
  def process_dashboard(api_key, pdf_files, language_name, goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
@@ -679,14 +67,14 @@ def toggle_custom_model(choice):
679
  def refresh_models(api_key):
680
  """Refresh the list of available models based on the API key."""
681
  if not api_key:
682
- return gr.Dropdown(choices=["meta-llama/llama-4-scout:free", "custom"] + OPENROUTER_MODELS, value="meta-llama/llama-4-scout:free")
683
 
684
  try:
685
  available_models = get_available_models(api_key)
686
- return gr.Dropdown(choices=["meta-llama/llama-4-scout:free", "custom"] + available_models, value="meta-llama/llama-4-scout:free")
687
  except Exception as e:
688
  print(f"Error refreshing models: {str(e)}")
689
- return gr.Dropdown(choices=["meta-llama/llama-4-scout:free", "custom"] + OPENROUTER_MODELS, value="meta-llama/llama-4-scout:free")
690
 
691
  # Define the Gradio interface
692
  with gr.Blocks(title="Dashboard Narrator - Powered by OpenRouter.ai", theme=gr.themes.Soft()) as demo:
@@ -704,8 +92,8 @@ with gr.Blocks(title="Dashboard Narrator - Powered by OpenRouter.ai", theme=gr.t
704
  refresh_btn = gr.Button("🔄 Refresh Available Models", size="sm")
705
 
706
  model_choice = gr.Dropdown(
707
- choices=["meta-llama/llama-4-scout:free", "custom"] + OPENROUTER_MODELS,
708
- value="meta-llama/llama-4-scout:free",
709
  label="Select Model"
710
  )
711
 
 
1
+ # Return the combined report content and all output files
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  combined_content = "\n\n---\n\n".join(individual_reports)
3
  if len(individual_reports) > 1 and 'comparative_report' in locals():
4
  combined_content += f"\n\n{'='*80}\n\n# COMPARATIVE ANALYSIS\n\n{comparative_report}"
5
+
6
+ return combined_content, output_files, "✅ Analysis completed successfully!"
7
 
8
  # Wrapper function for Gradio interface
9
  def process_dashboard(api_key, pdf_files, language_name, goal_description=None, num_sections=4, model_name=DEFAULT_MODEL, custom_model=None):
 
67
  def refresh_models(api_key):
68
  """Refresh the list of available models based on the API key."""
69
  if not api_key:
70
+ return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)
71
 
72
  try:
73
  available_models = get_available_models(api_key)
74
+ return gr.Dropdown(choices=available_models, value=DEFAULT_MODEL)
75
  except Exception as e:
76
  print(f"Error refreshing models: {str(e)}")
77
+ return gr.Dropdown(choices=["custom"] + OPENROUTER_MODELS, value=DEFAULT_MODEL)
78
 
79
  # Define the Gradio interface
80
  with gr.Blocks(title="Dashboard Narrator - Powered by OpenRouter.ai", theme=gr.themes.Soft()) as demo:
 
92
  refresh_btn = gr.Button("🔄 Refresh Available Models", size="sm")
93
 
94
  model_choice = gr.Dropdown(
95
+ choices=["custom"] + OPENROUTER_MODELS,
96
+ value=DEFAULT_MODEL,
97
  label="Select Model"
98
  )
99