Spaces:
Paused
Paused
File size: 2,144 Bytes
6bed8a1 f2fb237 6bed8a1 0ce2dc8 6bed8a1 f4c3e35 6bed8a1 b968003 6bed8a1 b968003 36552b6 b968003 6bed8a1 b968003 6bed8a1 b968003 6bed8a1 0ce2dc8 2132820 0ce2dc8 b968003 6bed8a1 92703a9 6bed8a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM
import pandas as pd
import numpy as np
import random
import torch
import re
# Clear existing cache
torch.cuda.empty_cache()
# Load model directly
tokenizer = AutoTokenizer.from_pretrained("Salesforce/xgen-7b-8k-inst", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("Salesforce/xgen-7b-8k-inst", torch_dtype=torch.float16).to('cuda')
# Bloom LLM
def xgen(input_text,
history):
"""
This will take an input text, encode with the tokenizer,
generate with the input_ids into the Bloom LLM, than decode
the output id into text.
"""
# # User's question
# input_text = "How was jupiter created in the solar system."
# Prompt template for LLM "context"
header = (
"A chat between a curious human and an artificial intelligence assistant called bubble bee. "
"The assistant gives helpful, detailed, and polite answers to the human's questions.\n\n"
)
# token id's for prompt
input_ids = tokenizer(header + input_text, return_tensors='pt').to('cuda')
# Bloom already comes in fp16
# Let's use torch.no_grad() to save memory and computation
with torch.no_grad():
# Generate output from LLM
outputs = model.generate(**input_ids,
max_new_tokens=256,
top_k=100,
eos_token_id=50256)
# Decode the output tensors into string
outputs_decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)
# CLEAN UP TEXT
output_text = outputs_decoded.replace(header, "").strip()
output_text = re.sub(r'^Assistant:\s*', '', output_text)
output_text = output_text.replace('<|endoftext\>', '').strip()
return output_text
torch.cuda.empty_cache()
# Create the mushroom UI
chatbot=gr.Chatbot(height=700, label='Gradio ChatInterface')
with gr.Blocks(fill_height=True) as demo:
gr.ChatInterface(
fn=xgen,
fill_height=True,
title="Bubble Bee π"
)
if __name__ == "__main__":
demo.launch() |