File size: 6,502 Bytes
0e22628 ce22783 458a639 ce22783 458a639 ce22783 458a639 ce22783 70464da ce22783 af6b248 ce22783 af6b248 929e2ad af6b248 ce22783 458a639 ce22783 af6b248 ce22783 70464da 929e2ad ce22783 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
pipeline,
BlipProcessor,
BlipForConditionalGeneration,
)
from PIL import Image
import whisper
import subprocess
import uuid
import os
# ----------- Load GoEmotions Model (28 emotion classes) -----------
model_name = "joeddav/distilbert-base-uncased-go-emotions-student"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name)
classifier = pipeline(
"text-classification",
model=model,
tokenizer=tokenizer,
top_k=None, # get scores for all emotions
function_to_apply="sigmoid",
)
# ----------- Load Summarizer -----------
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")
# ----------- Load Captioning Model -----------
caption_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
caption_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# ----------- Load Whisper Model -----------
whisper_model = whisper.load_model("base")
# ----------- Define Emotion Categories -----------
EMOTION_LABELS = [
"admiration",
"amusement",
"anger",
"annoyance",
"approval",
"caring",
"confusion",
"curiosity",
"desire",
"disappointment",
"disapproval",
"disgust",
"embarrassment",
"excitement",
"fear",
"gratitude",
"grief",
"joy",
"love",
"nervousness",
"optimism",
"pride",
"realization",
"relief",
"remorse",
"sadness",
"surprise",
"neutral",
]
POSITIVE = {
"admiration",
"amusement",
"approval",
"caring",
"excitement",
"gratitude",
"joy",
"love",
"optimism",
"pride",
"relief",
}
NEGATIVE = {
"anger",
"annoyance",
"disappointment",
"disapproval",
"disgust",
"embarrassment",
"fear",
"grief",
"nervousness",
"remorse",
"sadness",
}
SURPRISE_UNCERTAINTY = {
"surprise",
"confusion",
"curiosity",
"realization",
}
DESIRE = {"desire"}
NEUTRAL = {"neutral"}
CATEGORY_MAP = {
"Positive": POSITIVE,
"Negative": NEGATIVE,
"Surprise/Uncertainty": SURPRISE_UNCERTAINTY,
"Desire": DESIRE,
"Neutral": NEUTRAL,
}
# ----------- Text Classification -----------
def process_text(text):
if not text.strip():
return "Please enter some text."
# Summarize only if text is longer than 1000 words
if len(text.split()) > 1000:
summary = summarizer(text, max_length=200, min_length=100, do_sample=False)[0]["summary_text"]
else:
summary = text
print("Summary:", summary)
preds = classifier(summary, truncation=True, max_length=512)[0]
label_scores = {pred["label"]: pred["score"] for pred in preds}
print("Raw classifier preds:", preds)
print("Label scores dict:", label_scores)
category_totals = {}
for cat_name, emotions in CATEGORY_MAP.items():
category_totals[cat_name] = sum(label_scores.get(e, 0) for e in emotions)
best_category = max(category_totals, key=category_totals.get)
emotions_in_cat = [(e, label_scores.get(e, 0)) for e in CATEGORY_MAP[best_category]]
emotions_in_cat.sort(key=lambda x: x[1], reverse=True)
threshold = 0.8
strong_emotions = [(e, s) for e, s in emotions_in_cat if s > threshold]
# Add the summary or original text here:
out = f"**Summary/Text:**\n{summary}\n\n**Dominant Category:** {best_category}\n\n**Emotions in this category:**\n"
if strong_emotions:
for emotion, score in strong_emotions:
out += f"{emotion}: {score:.4f}\n"
else:
top_two = emotions_in_cat[:2]
for emotion, score in top_two:
out += f"{emotion}: {score:.4f}\n"
return out.strip()
# ----------- Image Processing -----------
def image_to_text(image_path):
image = Image.open(image_path).convert("RGB")
inputs = caption_processor(images=image, return_tensors="pt")
out = caption_model.generate(**inputs)
return caption_processor.decode(out[0], skip_special_tokens=True)
def process_image(image_path):
caption = image_to_text(image_path)
summary = summarizer(caption, max_length=60, min_length=5, do_sample=False)[0]["summary_text"]
return process_text(summary)
# ----------- Audio/Video Transcription -----------
def extract_audio(video_path):
audio_path = f"/tmp/{uuid.uuid4().hex}.mp3"
subprocess.run(["ffmpeg", "-y", "-i", video_path, "-q:a", "0", "-map", "a", audio_path], check=True)
return audio_path
def transcribe_audio(audio_path):
result = whisper_model.transcribe(audio_path)
return result["text"]
def process_audio(audio_path):
text = transcribe_audio(audio_path)
return process_text(text)
def process_video(video_path):
audio_path = extract_audio(video_path)
text = transcribe_audio(audio_path)
os.remove(audio_path)
return process_text(text)
# ----------- Gradio Interfaces -----------
text_input = gr.Interface(
fn=process_text,
inputs=gr.Textbox(lines=7, placeholder="Enter text...", label="Text Input"),
outputs=gr.Textbox(label="Emotion Output"),
title="Text Emotion Classifier (GoEmotions, Category Based)",
description="Enter text to detect nuanced emotions grouped by dominant category.",
)
image_input = gr.Interface(
fn=process_image,
inputs=gr.Image(type="filepath", label="Upload Image"),
outputs=gr.Textbox(label="Emotion Output"),
title="Image Emotion Classifier",
description="Upload an image. Model will caption it, summarize, and predict emotions grouped by category.",
)
audio_input = gr.Interface(
fn=process_audio,
inputs=gr.Audio(type="filepath", label="Upload Audio"),
outputs=gr.Textbox(label="Emotion Output"),
title="Audio Emotion Classifier",
description="Upload audio. Model will transcribe, summarize, and detect emotions grouped by category.",
)
video_input = gr.Interface(
fn=process_video,
inputs=gr.File(file_types=[".mp4", ".mov", ".avi"], label="Upload Video"),
outputs=gr.Textbox(label="Emotion Output"),
title="Video Emotion Classifier",
description="Upload video. Model will extract audio, transcribe, summarize, and detect emotions grouped by category.",
)
gr.TabbedInterface(
[text_input, image_input, audio_input, video_input], ["Text", "Image", "Audio", "Video"]
).launch()
|