Spaces:
Sleeping
Sleeping
import os | |
from dotenv import load_dotenv | |
import gradio as gr | |
from PIL import Image | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
import openai | |
# Load environment variables from .env file | |
load_dotenv() | |
# Retrieve OpenAI credentials from environment | |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") | |
OPENAI_API_BASE = os.getenv("OPENAI_API_BASE", "https://models.inference.ai.azure.com") # fallback | |
# Set OpenAI credentials | |
openai.api_key = OPENAI_API_KEY | |
openai.base_url = OPENAI_API_BASE | |
# Load the BLIP model and processor | |
processor = BlipProcessor.from_pretrained("nathansutton/generate-cxr") | |
model = BlipForConditionalGeneration.from_pretrained("nathansutton/generate-cxr") | |
def generate_report(image): | |
"""Generate a CXR report from the uploaded image.""" | |
inputs = processor(images=image, text="a chest x-ray", return_tensors="pt") | |
output = model.generate(**inputs, max_length=512) | |
report = processor.decode(output[0], skip_special_tokens=True) | |
return report | |
def chat_with_openai(user_message, previous_report): | |
"""Chat with GPT-4o based on the generated report.""" | |
conversation = [ | |
{"role": "system", "content": "You are a helpful medical assistant."}, | |
{"role": "user", "content": f"Here is a medical report: {previous_report}. Now, {user_message}"} | |
] | |
response = openai.ChatCompletion.create( | |
model="gpt-4o", | |
messages=conversation, | |
temperature=1.0, | |
top_p=1.0, | |
max_tokens=1000, | |
) | |
return response['choices'][0]['message']['content'] | |
def process_image_and_chat(image, user_message, chat_history): | |
"""Handle full process: generate report and chat.""" | |
if chat_history is None: | |
chat_history = [] | |
# Step 1: Generate CXR report | |
report = generate_report(image) | |
chat_history.append({"role": "assistant", "content": report}) | |
# Step 2: Chat based on the report | |
response = chat_with_openai(user_message, report) | |
chat_history.append({"role": "user", "content": user_message}) | |
chat_history.append({"role": "assistant", "content": response}) | |
return chat_history, chat_history | |
# Gradio Interface | |
iface = gr.Interface( | |
fn=process_image_and_chat, | |
inputs=[ | |
gr.Image(type="pil", label="Upload Chest X-ray Image"), | |
gr.Textbox(label="Your Question", placeholder="Ask a question about the report..."), | |
gr.State(value=[]), # Memory for chat history | |
], | |
outputs=[ | |
gr.Chatbot(label="Medical Assistant Chat", type="messages"), | |
gr.State(), # Return updated history | |
], | |
title="Chest X-ray Assistant", | |
description="Upload a chest X-ray image and ask questions about it. The assistant will generate a radiology report and answer your questions using GPT-4o.", | |
) | |
if __name__ == "__main__": | |
iface.launch() | |