Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files
main.py
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Entry point for FastAPI
|
2 |
+
from fastapi import FastAPI
|
3 |
+
from pydantic import BaseModel
|
4 |
+
from models import load_model, classify_email
|
5 |
+
from utils import mask_pii_multilingual
|
6 |
+
|
7 |
+
app = FastAPI()
|
8 |
+
tokenizer, model, device = load_model()
|
9 |
+
|
10 |
+
class EmailInput(BaseModel):
|
11 |
+
input_email_body: str
|
12 |
+
|
13 |
+
@app.post("/classify")
|
14 |
+
async def classify_route(request: EmailInput):
|
15 |
+
text = request.input_email_body
|
16 |
+
masked_text, entities = mask_pii_multilingual(text)
|
17 |
+
category = classify_email(masked_text, tokenizer, model, device)
|
18 |
+
return {
|
19 |
+
"input_email_body": text,
|
20 |
+
"list_of_masked_entities": entities,
|
21 |
+
"masked_email": masked_text,
|
22 |
+
"category_of_the_email": category
|
23 |
+
}
|
24 |
+
|
models.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
2 |
+
import torch
|
3 |
+
|
4 |
+
def load_model():
|
5 |
+
model_path = "model"
|
6 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_path)
|
8 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
9 |
+
model.to(device)
|
10 |
+
model.eval()
|
11 |
+
return tokenizer, model, device
|
12 |
+
|
13 |
+
def classify_email(text, tokenizer, model, device):
|
14 |
+
inputs = tokenizer(text, return_tensors="pt", max_length=256, padding="max_length", truncation=True)
|
15 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
16 |
+
with torch.no_grad():
|
17 |
+
logits = model(**inputs).logits
|
18 |
+
label_map = {0: "Incident", 1: "Request", 2: "Change", 3: "Problem"}
|
19 |
+
pred = torch.argmax(logits, dim=1).item()
|
20 |
+
return label_map[pred]
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
uvicorn
|
3 |
+
transformers
|
4 |
+
torch
|
5 |
+
pydantic
|
6 |
+
pandas
|
7 |
+
numpy
|
utils.py
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
|
3 |
+
def mask_pii_multilingual(text: str):
|
4 |
+
|
5 |
+
# Load model only once globally if needed
|
6 |
+
model_name = "Davlan/xlm-roberta-base-ner-hrl"
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForTokenClassification.from_pretrained(model_name)
|
9 |
+
ner_pipe = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
10 |
+
|
11 |
+
regex_patterns = {
|
12 |
+
"email": r"\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Za-z]{2,}\b",
|
13 |
+
"phone_number": r"(?:\+?\d{1,3})?[-.\s]?\(?\d{1,4}\)?[-.\s]?\d{2,4}[-.\s]?\d{2,4}[-.\s]?\d{2,4}",
|
14 |
+
"dob": r"\b(0?[1-9]|[12][0-9]|3[01])[-/](0?[1-9]|1[012])[-/](19[5-9]\d|20[0-3]\d)\b",
|
15 |
+
"aadhar_num": r"\b\d{4}[\s-]?\d{4}[\s-]?\d{4}\b",
|
16 |
+
"credit_debit_no": r"\b(?:\d{4}[\s-]?){3}\d{4}\b",
|
17 |
+
"cvv_no": r"\b\d{3,4}\b",
|
18 |
+
"expiry_no": r"\b(0[1-9]|1[0-2])[/-]?(?:\d{2}|\d{4})\b"
|
19 |
+
}
|
20 |
+
|
21 |
+
entities = []
|
22 |
+
masked_text = text
|
23 |
+
offsets = []
|
24 |
+
|
25 |
+
# Step 1: Apply regex PII masking first
|
26 |
+
for entity_type, pattern in regex_patterns.items():
|
27 |
+
for match in re.finditer(pattern, text):
|
28 |
+
start, end = match.start(), match.end()
|
29 |
+
if any(start < e[1] and end > e[0] for e in offsets):
|
30 |
+
continue
|
31 |
+
token = f"[{entity_type}]"
|
32 |
+
entity_val = text[start:end]
|
33 |
+
masked_text = masked_text[:start] + token + masked_text[end:]
|
34 |
+
offsets.append((start, end))
|
35 |
+
entities.append({
|
36 |
+
"position": [start, end],
|
37 |
+
"classification": entity_type,
|
38 |
+
"entity": entity_val
|
39 |
+
})
|
40 |
+
|
41 |
+
# Step 2: Run NER on updated masked_text to avoid overlap
|
42 |
+
ner_results = ner_pipe(masked_text)
|
43 |
+
for ent in ner_results:
|
44 |
+
start, end = ent["start"], ent["end"]
|
45 |
+
if ent["entity_group"] != "PER":
|
46 |
+
continue
|
47 |
+
if any(start < e[1] and end > e[0] for e in offsets):
|
48 |
+
continue
|
49 |
+
token = "[full_name]"
|
50 |
+
entity_val = text[start:end]
|
51 |
+
masked_text = masked_text[:start] + token + masked_text[end:]
|
52 |
+
entities.append({
|
53 |
+
"position": [start, end],
|
54 |
+
"classification": "full_name",
|
55 |
+
"entity": entity_val
|
56 |
+
})
|
57 |
+
offsets.append((start, end))
|
58 |
+
|
59 |
+
# Sort final result
|
60 |
+
entities.sort(key=lambda x: x["position"][0])
|
61 |
+
return masked_text, entities
|