from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import os def load_model(): model_path = "sathish2352/email-classifier-model" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForSequenceClassification.from_pretrained(model_path) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) model.eval() return tokenizer, model, device def classify_email(text, tokenizer, model, device): inputs = tokenizer(text, return_tensors="pt", max_length=256, padding="max_length", truncation=True) inputs = {k: v.to(device) for k, v in inputs.items()} with torch.no_grad(): logits = model(**inputs).logits label_map = {0: "Incident", 1: "Request", 2: "Change", 3: "Problem"} pred = torch.argmax(logits, dim=1).item() return label_map[pred]