File size: 27,042 Bytes
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
bdedf43
 
1099afe
bdedf43
 
1099afe
bdedf43
 
 
 
 
1099afe
bdedf43
 
1099afe
 
 
 
bdedf43
 
1099afe
 
 
 
 
 
 
 
bdedf43
1099afe
bdedf43
 
 
 
1099afe
 
 
bdedf43
 
 
 
1099afe
 
bdedf43
 
1099afe
 
bdedf43
 
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
bdedf43
1099afe
 
bdedf43
1099afe
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
bdedf43
 
1099afe
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
 
 
1099afe
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
 
 
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
 
1099afe
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
bdedf43
 
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
# DEPENDENCIES
import sys
import json
import time
import requests
from enum import Enum
from typing import Any
from typing import Dict
from typing import List
from pathlib import Path
from typing import Literal
from typing import Optional
from dataclasses import dataclass
from config.settings import settings

# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))

from utils.logger import log_info
from utils.logger import log_error
from config.model_config import ModelConfig
from utils.logger import ContractAnalyzerLogger


# Optional imports for API providers
try:
    import openai
    OPENAI_AVAILABLE = True

except ImportError:
    OPENAI_AVAILABLE = False

try:
    import anthropic
    ANTHROPIC_AVAILABLE = True

except ImportError:
    ANTHROPIC_AVAILABLE = False


class LLMProvider(Enum):
    """
    Supported LLM providers
    """
    OLLAMA    = "ollama"
    OPENAI    = "openai"
    ANTHROPIC = "anthropic"


@dataclass
class LLMResponse:
    """
    Standardized LLM response
    """
    text            : str
    provider        : str
    model           : str
    tokens_used     : int
    latency_seconds : float
    success         : bool
    error_message   : Optional[str]            = None
    raw_response    : Optional[Dict[str, Any]] = None
    

    def to_dict(self) -> Dict[str, Any]:
        """
        Convert to dictionary
        """
        return {"text"            : self.text,
                "provider"        : self.provider,
                "model"           : self.model,
                "tokens_used"     : self.tokens_used,
                "latency_seconds" : round(self.latency_seconds, 3),
                "success"         : self.success,
                "error_message"   : self.error_message,
               }


class LLMManager:
    """
    Unified LLM manager for multiple providers : handles Ollama (local), OpenAI API, and Anthropic API
    """
    def __init__(self, default_provider: LLMProvider = LLMProvider.OLLAMA, ollama_base_url: Optional[str] = None,
                 openai_api_key: Optional[str] = None, anthropic_api_key: Optional[str] = None):
        """
        Initialize LLM Manager
        
        Arguments:
        ----------
            default_provider  : Default LLM provider to use
            
            ollama_base_url   : Ollama server URL (default: from settings)
            
            openai_api_key    : OpenAI API key (or set OPENAI_API_KEY env var)
            
            anthropic_api_key : Anthropic API key (or set ANTHROPIC_API_KEY env var)
        """
        self.default_provider   = default_provider
        self.logger             = ContractAnalyzerLogger.get_logger()
        
        # Configuration Variables Initialization
        self.config             = ModelConfig()
        
        # Ollama configuration 
        self.ollama_base_url    = ollama_base_url or settings.OLLAMA_BASE_URL
        self.ollama_model       = settings.OLLAMA_MODEL
        self.ollama_timeout     = settings.OLLAMA_TIMEOUT
        self.ollama_temperature = settings.OLLAMA_TEMPERATURE
        
        # OpenAI configuration 
        self.openai_api_key     = openai_api_key or settings.OPENAI_API_KEY
        
        if (OPENAI_AVAILABLE and self.openai_api_key):
            openai.api_key = self.openai_api_key
        
        # Anthropic configuration  
        self.anthropic_api_key = anthropic_api_key or settings.ANTHROPIC_API_KEY

        if (ANTHROPIC_AVAILABLE and self.anthropic_api_key):
            self.anthropic_client = anthropic.Anthropic(api_key = self.anthropic_api_key)
        
        else:
            self.anthropic_client = None
        
        # Rate limiting (simple token bucket)
        self._rate_limit_tokens      = settings.RATE_LIMIT_REQUESTS
        self._rate_limit_last_refill = time.time()
        self._rate_limit_refill_rate = settings.RATE_LIMIT_REQUESTS / settings.RATE_LIMIT_PERIOD
        
        # Generation settings 
        self.generation_config = self.config.LLM_GENERATION
        
        log_info("LLMManager initialized",
                 default_provider    = default_provider.value,
                 ollama_base_url     = self.ollama_base_url,
                 ollama_model        = self.ollama_model,
                 ollama_timeout      = self.ollama_timeout,
                 ollama_temperature  = self.ollama_temperature,
                 openai_available    = OPENAI_AVAILABLE and bool(self.openai_api_key),
                 anthropic_available = ANTHROPIC_AVAILABLE and bool(self.anthropic_api_key),
                 rate_limit_requests = settings.RATE_LIMIT_REQUESTS,
                 rate_limit_period   = settings.RATE_LIMIT_PERIOD,
                )


    # Provider Availability Check
    def _check_ollama_available(self) -> bool:
        """
        Check if Ollama server is available
        """
        try:
            response  = requests.get(f"{self.ollama_base_url}/api/tags", timeout = 30)
            available = (response.status_code == 200)

            if available:
                log_info("Ollama server is available", base_url = self.ollama_base_url)

            return available

        except Exception as e:
            log_error(e, context = {"component" : "LLMManager", "operation" : "check_ollama"})

            return False

    
    def get_available_providers(self) -> List[LLMProvider]:
        """
        Get list of available providers
        """
        available = list()
        
        if self._check_ollama_available():
            available.append(LLMProvider.OLLAMA)
        
        if OPENAI_AVAILABLE and self.openai_api_key:
            available.append(LLMProvider.OPENAI)
        
        if ANTHROPIC_AVAILABLE and self.anthropic_api_key:
            available.append(LLMProvider.ANTHROPIC)
        
        log_info("Available LLM providers", providers = [p.value for p in available])
        
        return available
    

    # Rate Limiting
    def _check_rate_limit(self) -> bool:
        """
        Check if rate limit allows request (simple token bucket)
        """
        now         = time.time()
        time_passed = now - self._rate_limit_last_refill
        
        # Refill tokens
        self._rate_limit_tokens      = min(settings.RATE_LIMIT_REQUESTS, self._rate_limit_tokens + time_passed * self._rate_limit_refill_rate)
        self._rate_limit_last_refill = now
        
        if (self._rate_limit_tokens >= 1):
            self._rate_limit_tokens -= 1

            return True
        
        log_info("Rate limit hit, waiting...", tokens_remaining = self._rate_limit_tokens)
        
        return False
    

    def _wait_for_rate_limit(self):
        """
        Wait until rate limit allows request
        """
        while not self._check_rate_limit():
            time.sleep(0.5)
    

    # UNIFIED COMPLETION METHOD
    @ContractAnalyzerLogger.log_execution_time("llm_complete")
    def complete(self, prompt: str, provider: Optional[LLMProvider] = None, model: Optional[str] = None, temperature: Optional[float] = None, 
                 max_tokens: Optional[int] = None, system_prompt: Optional[str] = None, json_mode: bool = False, retry_on_error: bool = True, 
                 fallback_providers: Optional[List[LLMProvider]] = None) -> LLMResponse:
        """
        Unified completion method for all providers
        
        Arguments:
        ----------
            prompt             : User prompt
            
            provider           : LLM provider (default: self.default_provider)
            
            model              : Model name (provider-specific)
            
            temperature        : Sampling temperature (0.0-1.0, default from settings/config)
            
            max_tokens         : Maximum tokens to generate (default from config)
            
            system_prompt      : System prompt (if supported)
            
            json_mode          : Force JSON output (if supported)
            
            retry_on_error     : Retry with fallback providers on error
            
            fallback_providers : List of fallback providers to try
        
        Returns:
        --------
            { LLMResponse }    : LLMResponse object
        """
        provider    = provider or self.default_provider
        temperature = temperature or self.ollama_temperature
        max_tokens  = max_tokens or self.generation_config["max_tokens"]
        
        log_info("LLM completion request",
                 provider      = provider.value,
                 prompt_length = len(prompt),
                 temperature   = temperature,
                 max_tokens    = max_tokens,
                 json_mode     = json_mode,
                )
        
        # Rate limiting
        self._wait_for_rate_limit()
        
        # Try primary provider
        try:
            if (provider == LLMProvider.OLLAMA):
                return self._complete_ollama(prompt        = prompt,
                                             model         = model, 
                                             temperature   = temperature,
                                             max_tokens    = max_tokens, 
                                             system_prompt = system_prompt, 
                                             json_mode     = json_mode,
                                            )

            elif (provider == LLMProvider.OPENAI):
                return self._complete_openai(prompt        = prompt, 
                                             model         = model, 
                                             temperature   = temperature, 
                                             max_tokens    = max_tokens, 
                                             system_prompt = system_prompt, 
                                             json_mode     = json_mode,
                                            )

            elif (provider == LLMProvider.ANTHROPIC):
                return self._complete_anthropic(prompt        = prompt, 
                                                model         = model, 
                                                temperature   = temperature, 
                                                max_tokens    = max_tokens, 
                                                system_prompt = system_prompt,
                                               )

            else:
                raise ValueError(f"Unsupported provider: {provider}")
        
        except Exception as e:
            log_error(e, context = {"component" : "LLMManager", "operation" : "complete", "provider" : provider.value})
            
            # Try fallback providers
            if (retry_on_error and fallback_providers):
                log_info("Trying fallback providers", fallbacks = [p.value for p in fallback_providers])
                
                for fallback_provider in fallback_providers:
                    if (fallback_provider == provider):
                        continue
                    
                    try:
                        log_info(f"Attempting fallback to {fallback_provider.value}")
                        # Prevent infinite recursion
                        return self.complete(prompt         = prompt,
                                             provider       = fallback_provider,
                                             model          = model,
                                             temperature    = temperature,
                                             max_tokens     = max_tokens,
                                             system_prompt  = system_prompt,
                                             json_mode      = json_mode,
                                             retry_on_error = False,  
                                            )

                    except Exception as fallback_error:
                        log_error(fallback_error, context = {"component" : "LLMManager", "operation" : "fallback_complete", "provider" : fallback_provider.value})
                        continue
            
            # All attempts failed
            return LLMResponse(text            = "",
                               provider        = provider.value,
                               model           = model or "unknown",
                               tokens_used     = 0,
                               latency_seconds = 0.0,
                               success         = False,
                               error_message   = str(e),
                              )


    # OLLAMA Provider
    def _complete_ollama(self, prompt: str, model: Optional[str], temperature: float, max_tokens: int, system_prompt: Optional[str], json_mode: bool) -> LLMResponse:
        """
        Complete using local Ollama
        """
        start_time  = time.time()
        model       = model or self.ollama_model
        
        # Construct full prompt with system prompt
        full_prompt = prompt
        
        if system_prompt:
            full_prompt = f"<|system|>\n{system_prompt}\n<|user|>\n{prompt}\n<|assistant|>"
        
        payload = {"model"   : model,
                   "prompt"  : full_prompt,
                   "stream"  : False,
                   "options" : {"temperature": temperature, "num_predict": max_tokens},
                  }
        
        if json_mode:
            payload["format"] = "json"
        
        log_info("Calling Ollama API",
                 model     = model,
                 base_url  = self.ollama_base_url,
                 json_mode = json_mode,
                )
        
        response       = requests.post(f"{self.ollama_base_url}/api/generate", json = payload, timeout = self.ollama_timeout)
        response.raise_for_status()
        
        result         = response.json()
        generated_text = result.get('response', '')
        
        latency        = time.time() - start_time
        
        # Estimate tokens (rough approximation)
        tokens_used    = len(prompt.split()) + len(generated_text.split())
        
        log_info("Ollama completion successful",
                 model           = model,
                 tokens_used     = tokens_used,
                 latency_seconds = round(latency, 3),
                )
        
        return LLMResponse(text            = generated_text,
                           provider        = "ollama",
                           model           = model,
                           tokens_used     = tokens_used,
                           latency_seconds = latency,
                           success         = True,
                           raw_response    = result,
                          )
    

    # Open-AI Provider
    def _complete_openai(self, prompt: str, model: Optional[str], temperature: float, max_tokens: int, system_prompt: Optional[str], json_mode: bool) -> LLMResponse:
        """
        Complete using OpenAI API
        """
        if not OPENAI_AVAILABLE or not self.openai_api_key:
            raise ValueError("OpenAI not available. Install with: pip install openai")
        
        start_time = time.time()
        model      = model or "gpt-3.5-turbo"
        
        # Construct messages
        messages   = list()

        if system_prompt:
            messages.append({"role"    : "system", 
                             "content" : system_prompt,
                           })

        messages.append({"role"    : "user",
                         "content" : prompt,
                       })

        
        log_info("Calling OpenAI API", model = model, json_mode = json_mode)
        
        # API call parameters
        api_params = {"model"       : model,
                      "messages"    : messages,
                      "temperature" : temperature,
                      "max_tokens"  : max_tokens,
                     }
        
        if json_mode:
            api_params["response_format"] = {"type": "json_object"}
        
        response       = openai.ChatCompletion.create(**api_params)
        generated_text = response.choices[0].message.content
        tokens_used    = response.usage.total_tokens
        latency        = time.time() - start_time
        
        log_info("OpenAI completion successful", model = model, tokens_used = tokens_used, latency_seconds = round(latency, 3))
        
        return LLMResponse(text            = generated_text,
                           provider        = "openai",
                           model           = model,
                           tokens_used     = tokens_used,
                           latency_seconds = latency,
                           success         = True,
                           raw_response    = response.to_dict(),
                          )
    
    # Anthropic Provider
    def _complete_anthropic(self, prompt: str, model: Optional[str], temperature: float, max_tokens: int, system_prompt: Optional[str]) -> LLMResponse:
        """
        Complete using Anthropic (Claude) API
        """
        if not ANTHROPIC_AVAILABLE or not self.anthropic_client:
            raise ValueError("Anthropic not available. Install with: pip install anthropic")
        
        start_time = time.time()
        model      = model or "claude-3-sonnet-20240229"
        
        log_info("Calling Anthropic API", model = model)
        
        # API call
        message        = self.anthropic_client.messages.create(model       = model,
                                                               max_tokens  = max_tokens,
                                                               temperature = temperature,
                                                               system      = system_prompt or "",
                                                               messages    = [{"role": "user", "content": prompt}],
                                                              )
        
        generated_text = message.content[0].text
        tokens_used    = message.usage.input_tokens + message.usage.output_tokens
        latency        = time.time() - start_time
        
        log_info("Anthropic completion successful", model = model, tokens_used = tokens_used, latency_seconds = round(latency, 3))
        
        return LLMResponse(text            = generated_text,
                           provider        = "anthropic",
                           model           = model,
                           tokens_used     = tokens_used,
                           latency_seconds = latency,
                           success         = True,
                           raw_response    = message.dict(),
                          )
    

    # Specialized Methods 
    def generate_structured_json(self, prompt: str, schema_description: str, provider: Optional[LLMProvider] = None, **kwargs) -> Dict[str, Any]:
        """
        Generate structured JSON output
        
        Arguments:
        ----------
            prompt             : User prompt

            schema_description : Description of expected JSON schema
            
            provider           : LLM provider
            
            **kwargs           : Additional arguments for complete()
        
        Returns:
        --------
               { dict }        : Parsed JSON dictionary
        """
        system_prompt = (f"You are a helpful assistant that returns valid JSON.\n"
                         f"Expected schema:\n{schema_description}\n\n"
                         f"Return ONLY valid JSON, no markdown, no explanation."
                        )
        
        response      = self.complete(prompt        = prompt,
                                      provider      = provider,
                                      system_prompt = system_prompt,
                                      json_mode     = True,
                                      **kwargs,
                                     )
        
        if not response.success:
            raise ValueError(f"LLM completion failed: {response.error_message}")
        
        # Parse JSON
        try:
            # Clean response (remove markdown code blocks if present)
            text   = response.text.strip()
            text   = text.replace("```json", "").replace("```", "").strip()
            
            parsed = json.loads(text)

            log_info("JSON parsing successful", keys = list(parsed.keys()))
            
            return parsed
            
        except json.JSONDecodeError as e:
            log_error(e, context = {"component" : "LLMManager", "operation" : "parse_json", "response_text" : response.text})
            raise ValueError(f"Failed to parse JSON response: {e}")
    

    def batch_complete(self, prompts: List[str], provider: Optional[LLMProvider] = None, **kwargs) -> List[LLMResponse]:
        """
        Complete multiple prompts (sequential for now)
        
        Arguments:
        ----------
            prompts   : List of prompts
            
            provider  : LLM provider
            
            **kwargs  : Additional arguments for complete()
        
        Returns:
        --------
            { list }  : List of LLMResponse objects
        """
        log_info("Batch completion started", batch_size=len(prompts))
        
        responses = list()

        for i, prompt in enumerate(prompts):
            log_info(f"Processing prompt {i+1}/{len(prompts)}")

            response = self.complete(prompt   = prompt, 
                                     provider = provider, 
                                     **kwargs,
                                    )

            responses.append(response)
        
        successful = sum(1 for r in responses if r.success)
        
        log_info("Batch completion finished",
                 total       = len(prompts),
                 successful  = successful,
                 failed      = len(prompts) - successful,
                )
        
        return responses
    

    # OLLAMA-Specific Methods
    def list_ollama_models(self) -> List[str]:
        """
        List available local Ollama models
        """
        try:
            response = requests.get(f"{self.ollama_base_url}/api/tags", timeout = 30)
            response.raise_for_status()
            
            models   = [model['name'] for model in response.json().get('models', [])]

            log_info("Ollama models listed", count = len(models), models = models)

            return models
            
        except Exception as e:
            log_error(e, context = {"component" : "LLMManager", "operation" : "list_ollama_models"})
            return []

    
    def pull_ollama_model(self, model_name: str) -> bool:
        """
        Pull/download an Ollama model
        """
        try:
            log_info(f"Pulling Ollama model: {model_name}")
            
            response = requests.post(f"{self.ollama_base_url}/api/pull",
                                     json    = {"name": model_name},
                                     stream  = True,
                                     timeout = 600,  # 10 minutes for download
                                    )

            response.raise_for_status()
            
            # Stream response to track progress
            for line in response.iter_lines():
                if line:
                    data = json.loads(line)
                    
                    if ('status' in data):
                        log_info(f"Pull status: {data['status']}")
            
            log_info(f"Model pulled successfully: {model_name}")
            return True
            
        except Exception as e:
            log_error(e, context = {"component" : "LLMManager", "operation" : "pull_ollama_model", "model" : model_name})
            return False
    

    # Utility Methods
    def get_provider_info(self, provider: LLMProvider) -> Dict[str, Any]:
        """
        Get information about a provider
        """
        info = {"provider"  : provider.value,
                "available" : False,
                "models"    : [],
               }
        
        if (provider == LLMProvider.OLLAMA):
            info["available"] = self._check_ollama_available()

            if info["available"]:
                info["models"]   = self.list_ollama_models()
                info["base_url"] = self.ollama_base_url
        
        elif (provider == LLMProvider.OPENAI):
            info["available"] = OPENAI_AVAILABLE and bool(self.openai_api_key)

            if info["available"]:
                info["models"] = ["gpt-3.5-turbo", 
                                  "gpt-4", 
                                  "gpt-4-turbo-preview",
                                 ]
        
        elif (provider == LLMProvider.ANTHROPIC):
            info["available"] = ANTHROPIC_AVAILABLE and bool(self.anthropic_client)

            if info["available"]:
                info["models"] = ["claude-3-opus-20240229",
                                  "claude-3-sonnet-20240229",
                                  "claude-3-haiku-20240307",
                                 ]
        
        return info
    

    def estimate_cost(self, prompt_tokens: int, completion_tokens: int, provider: LLMProvider, model: str) -> float:
        """
        Estimate API cost in USD
        
        Arguments:
        ----------
            prompt_tokens     : Number of prompt tokens
            
            completion_tokens : Number of completion tokens
            
            provider          : LLM provider
            
            model             : Model name
        
        Returns:
        --------
                { float }     : Estimated cost in USD
        """
        # Pricing per 1K tokens (as of 2025)
        pricing = {"openai"    : {"gpt-3.5-turbo"       : {"prompt": 0.0015, "completion": 0.002},
                                  "gpt-4"               : {"prompt": 0.03, "completion": 0.06},
                                  "gpt-4-turbo-preview" : {"prompt": 0.01, "completion": 0.03},
                                 },
                   "anthropic" : {"claude-3-opus-20240229"   : {"prompt": 0.015, "completion": 0.075},
                                  "claude-3-sonnet-20240229" : {"prompt": 0.003, "completion": 0.015},
                                  "claude-3-haiku-20240307"  : {"prompt": 0.00025, "completion": 0.00125},
                                 }
                  }
        
        if (provider == LLMProvider.OLLAMA):
            # Local models are free
            return 0.0  
        
        provider_pricing = pricing.get(provider.value, {}).get(model)
        
        if not provider_pricing:
            return 0.0
        
        cost = ((prompt_tokens / 1000) * provider_pricing["prompt"] + (completion_tokens / 1000) * provider_pricing["completion"])
        
        return round(cost, 6)