Spaces:
Sleeping
Sleeping
File size: 33,378 Bytes
bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 522f7a0 bdedf43 522f7a0 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 522f7a0 bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 522f7a0 bdedf43 1099afe bdedf43 1099afe 522f7a0 1099afe bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 1099afe 522f7a0 1099afe 522f7a0 1099afe 522f7a0 bdedf43 1099afe bdedf43 522f7a0 bdedf43 1099afe bdedf43 1099afe bdedf43 522f7a0 bdedf43 1099afe bdedf43 522f7a0 bdedf43 522f7a0 1099afe 522f7a0 1099afe bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 522f7a0 bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe bdedf43 1099afe |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 |
# DEPENDENCIES
import sys
import json
from typing import Any
from typing import List
from typing import Dict
from typing import Tuple
from pathlib import Path
from typing import Optional
# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))
from utils.logger import log_info
from utils.logger import log_error
from config.risk_rules import RiskRules
from config.risk_rules import ContractType
from utils.logger import ContractAnalyzerLogger
from model_manager.llm_manager import LLMManager
from services.data_models import UnfavorableTerm
from model_manager.llm_manager import LLMProvider
from services.data_models import RiskInterpretation
from services.data_models import ClauseInterpretation
from services.clause_extractor import ExtractedClause
from services.protection_checker import MissingProtection
class LLMClauseInterpreter:
"""
Uses LLM to generate plain-English explanations for legal clauses and integrated with RiskAnalyzer results and RiskRules framework
"""
def __init__(self, llm_manager: LLMManager, default_provider: LLMProvider = LLMProvider.OLLAMA):
"""
Initialize LLM interpreter
Arguments:
----------
llm_manager { LLMManager } : LLMManager instance
default_provider { LLMProvider } : Default LLM provider to use
"""
self.llm_manager = llm_manager
self.default_provider = default_provider
self.risk_rules = RiskRules()
self.logger = ContractAnalyzerLogger.get_logger()
log_info("LLMClauseInterpreter initialized", default_provider = default_provider.value)
# Interpret with full risk context
@ContractAnalyzerLogger.log_execution_time("interpret_with_risk_context")
def interpret_with_risk_context(self, clauses: List[ExtractedClause], unfavorable_terms: List[UnfavorableTerm], missing_protections: List[MissingProtection],
contract_type: ContractType, overall_risk_score: int, max_clauses: int = 50, provider: Optional[LLMProvider] = None) -> RiskInterpretation:
"""
Generate comprehensive risk interpretation with full context
Arguments:
----------
clauses { list } : Extracted clauses with risk scores
unfavorable_terms { list } : Detected unfavorable terms
missing_protections { list } : Missing critical protections
contract_type { ContractType } : Type of contract for context
overall_risk_score { int } : Overall risk score (0-100)
max_clauses { int } : Maximum clauses to interpret
provider { LLMProvider } : LLM provider to use
Returns:
--------
{ RiskInterpretation } : Comprehensive RiskInterpretation with explanations
"""
provider = provider or self.default_provider
log_info("Starting comprehensive risk interpretation",
contract_type = contract_type.value,
overall_risk_score = overall_risk_score,
num_clauses = len(clauses),
num_unfavorable_terms = len(unfavorable_terms),
num_missing_protections = len(missing_protections),
)
# Interpret key clauses with risk context
clause_interpretations = self.interpret_clauses(clauses = clauses,
max_clauses = max_clauses,
provider = provider,
)
# Generate overall risk explanation
overall_explanation = self._generate_overall_risk_explanation(overall_risk_score = overall_risk_score,
contract_type = contract_type,
unfavorable_terms = unfavorable_terms,
missing_protections = missing_protections,
provider = provider,
)
# Extract key concerns
key_concerns = self._extract_key_concerns(unfavorable_terms = unfavorable_terms,
missing_protections = missing_protections,
clause_interpretations = clause_interpretations,
)
# Generate negotiation strategy
negotiation_strategy = self._generate_negotiation_strategy(contract_type = contract_type,
unfavorable_terms = unfavorable_terms,
missing_protections = missing_protections,
overall_risk_score = overall_risk_score,
provider = provider,
)
# Market comparison
market_comparison = self._generate_market_comparison(contract_type = contract_type,
overall_risk_score = overall_risk_score,
provider = provider,
)
interpretation = RiskInterpretation(overall_risk_explanation = overall_explanation,
key_concerns = key_concerns,
negotiation_strategy = negotiation_strategy,
market_comparison = market_comparison,
clause_interpretations = clause_interpretations,
)
log_info("Comprehensive risk interpretation complete")
return interpretation
@ContractAnalyzerLogger.log_execution_time("interpret_clauses")
def interpret_clauses(self, clauses: List[ExtractedClause], max_clauses: int = 50, provider: Optional[LLMProvider] = None) -> List[ClauseInterpretation]:
"""
Generate plain-English interpretations for multiple clauses
Arguments:
----------
clauses { list } : List of extracted clauses
max_clauses { int } : Maximum number to interpret (for cost control)
provider { LLMProvider } : LLM provider to use (default: self.default_provider)
Returns:
--------
{ list } : List of ClauseInterpretation objects
"""
provider = provider or self.default_provider
log_info(f"Starting clause interpretation", num_clauses = min(len(clauses), max_clauses), provider = provider.value)
# Prioritize clauses by risk indicators and confidence
prioritized = self._prioritize_clauses(clauses, max_clauses)
interpretations = list()
for clause in prioritized:
try:
interpretation = self._interpret_single_clause(clause, provider)
interpretations.append(interpretation)
except Exception as e:
log_error(e, context = {"component": "LLMClauseInterpreter", "operation": "interpret_single_clause", "clause_reference": clause.reference})
# Continue with other clauses even if one fails
continue
log_info(f"Clause interpretation complete", successful = len(interpretations), failed = len(prioritized) - len(interpretations))
return interpretations
def _prioritize_clauses(self, clauses: List[ExtractedClause], max_clauses: int) -> List[ExtractedClause]:
"""
Prioritize clauses for interpretation (high-risk first)
"""
# Scoring with risk_score
scored = list()
for clause in clauses:
# Base score from original logic
base_score = (len(clause.risk_indicators) * 3 + # Risk indicators
clause.confidence * 2 + # Confidence
(1 if clause.category in ['non_compete', 'termination', 'indemnification'] else 0) * 2
)
# Add risk_score if available (from RiskAnalyzer)
risk_score_boost = getattr(clause, 'risk_score', 0) / 10
total_score = base_score + risk_score_boost
scored.append((clause, total_score))
# Sort by score (descending)
scored.sort(key = lambda x: x[1], reverse = True)
return [clause for clause, _ in scored[:max_clauses]]
def _interpret_single_clause(self, clause: ExtractedClause, provider: LLMProvider) -> ClauseInterpretation:
"""
Generate plain-English interpretation for a single clause
"""
# Create enhanced prompt with risk context
prompt = self._create_interpretation_prompt(clause)
# Call LLM with structured output
schema_description = """
{
"plain_english_summary": "string (1-2 sentence summary in simple terms)",
"key_points": ["string", "string", ...] (3-5 key points),
"potential_risks": ["string", "string", ...] (2-4 potential risks),
"favorability": "string (one of: favorable, neutral, unfavorable)",
"suggested_improvements": ["string", "string", ...] (2-3 improvement suggestions)
}
"""
try:
result = self.llm_manager.generate_structured_json(prompt = prompt,
schema_description = schema_description,
provider = provider,
temperature = 0.3,
max_tokens = 1200,
fallback_providers = [LLMProvider.OPENAI, LLMProvider.ANTHROPIC],
)
# Calculate negotiation priority
negotiation_priority = self._calculate_negotiation_priority(favorability = result.get("favorability", "neutral"),
risk_indicators = clause.risk_indicators,
risk_score = getattr(clause, 'risk_score', 0),
)
# Parse result
interpretation = ClauseInterpretation(clause_reference = clause.reference,
original_text = clause.text[:500] + "..." if len(clause.text) > 500 else clause.text,
plain_english_summary = result.get("plain_english_summary", "Unable to generate summary"),
key_points = result.get("key_points", []),
potential_risks = result.get("potential_risks", []),
favorability = result.get("favorability", "neutral"),
confidence_score = 0.85, # High confidence if LLM succeeded
risk_score = getattr(clause, 'risk_score', 0),
negotiation_priority = negotiation_priority,
suggested_improvements = result.get("suggested_improvements", []),
)
log_info(f"Clause interpreted successfully",
clause_reference = clause.reference,
favorability = interpretation.favorability,
negotiation_priority = negotiation_priority,
)
return interpretation
except Exception as e:
log_error(e, context = {"component": "LLMClauseInterpreter", "operation": "_interpret_single_clause", "clause_reference": clause.reference})
# Enhanced fallback with risk context
return self._fallback_interpretation(clause)
def _create_interpretation_prompt(self, clause: ExtractedClause) -> str:
"""
Create concise prompt for clause interpretation
"""
risk_context = ""
if clause.risk_indicators:
risk_context = f"\nRisk Keywords: {', '.join(clause.risk_indicators[:3])}"
risk_score_context = ""
if hasattr(clause, 'risk_score'):
if (clause.risk_score >= 70):
risk_level = "CRITICAL RISK"
elif (clause.risk_score >= 50):
risk_level = "HIGH RISK"
else:
risk_level = "Moderate risk"
risk_score_context = f"\nRisk Level: {risk_level} ({clause.risk_score}/100)"
prompt = f"""
Explain this legal clause in plain English.
CLAUSE: {clause.reference} - {clause.category.replace('_', ' ').title()}{risk_score_context}{risk_context}
TEXT: "{clause.text}..."
Provide:
1. SUMMARY: 1-2 sentences explaining what this means
2. KEY_POINTS: 3 bullet points of what to know
3. POTENTIAL_RISKS: 2-3 specific risks or concerns
4. FAVORABILITY: "favorable", "neutral", or "unfavorable"
5. IMPROVEMENTS: 2 specific suggestions to fix this
Keep each section CONCISE. Total response should be ~150 words.
Return ONLY valid JSON:
{{
"plain_english_summary": "...",
"key_points": ["...", "...", "..."],
"potential_risks": ["...", "..."],
"favorability": "unfavorable",
"suggested_improvements": ["...", "..."]
}}
"""
return prompt
def _calculate_negotiation_priority(self, favorability: str, risk_indicators: List[str], risk_score: float) -> str:
"""
Calculate negotiation priority based on multiple factors
"""
if (favorability == "unfavorable") and ((len(risk_indicators) >= 3) or (risk_score >= 70)):
return "high"
elif (favorability == "unfavorable") or ((len(risk_indicators) >= 2) or (risk_score >= 50)):
return "medium"
else:
return "low"
def _map_risk_score_to_level(self, risk_score: float) -> str:
"""
Map numeric risk score to risk level string
"""
if (risk_score >= 70):
return "critical"
elif (risk_score >= 50):
return "high"
elif (risk_score >= 30):
return "medium"
else:
return "low"
def _fallback_interpretation(self, clause: ExtractedClause) -> ClauseInterpretation:
"""
Fallback rule-based interpretation with risk context
"""
category_summaries = {"compensation" : "This clause defines payment terms, including salary, bonuses, and benefits.",
"termination" : "This clause specifies conditions for ending the agreement, including notice periods and grounds for termination.",
"non_compete" : "This clause restricts future employment opportunities with competitors.",
"confidentiality" : "This clause requires protection of sensitive business information.",
"indemnification" : "This clause defines financial responsibility for claims or losses.",
"intellectual_property" : "This clause determines ownership rights for work created.",
"liability" : "This clause limits financial exposure for damages or breaches.",
"warranty" : "This clause contains promises about quality or performance.",
"dispute_resolution" : "This clause outlines processes for resolving disagreements.",
}
summary = category_summaries.get(clause.category, f"This {clause.category} clause defines specific rights and obligations.")
key_points = [f"Classified as {clause.category} clause",
f"Reference: {clause.reference}",
f"Extraction confidence: {clause.confidence:.2f}"
]
if clause.risk_indicators:
key_points.append(f"Risk indicators: {', '.join(clause.risk_indicators[:3])}")
potential_risks = clause.risk_indicators[:4] if clause.risk_indicators else ["Standard clause - review recommended"]
# Favorability based on risk indicators and score
risk_score = getattr(clause, 'risk_score', 0)
if (len(clause.risk_indicators) >= 3) or (risk_score >= 70):
favorability = "unfavorable"
elif (len(clause.risk_indicators) >= 1) or (risk_score >= 40):
favorability = "neutral"
else:
favorability = "favorable"
negotiation_priority = self._calculate_negotiation_priority(favorability = favorability,
risk_indicators = clause.risk_indicators,
risk_score = risk_score,
)
suggested_improvements = ["Review with legal counsel",
"Compare with industry standards",
"Consider impact on business operations"
]
return ClauseInterpretation(clause_reference = clause.reference,
original_text = clause.text[:500] + "..." if len(clause.text) > 500 else clause.text,
plain_english_summary = summary,
key_points = key_points,
potential_risks = potential_risks,
favorability = favorability,
confidence_score = 0.50, # Medium confidence for fallback
risk_score = risk_score,
negotiation_priority = negotiation_priority,
suggested_improvements = suggested_improvements,
)
def _generate_overall_risk_explanation(self, overall_risk_score: int, contract_type: ContractType, unfavorable_terms: List[UnfavorableTerm], missing_protections: List[MissingProtection],
provider: LLMProvider) -> str:
"""
Generate concise overall risk explanation
"""
# Handle both object and dictionary formats for unfavorable_terms
critical_terms = list()
high_terms = list()
issues_summary = list()
critical_protections = list()
for term in unfavorable_terms:
severity = ""
if isinstance(term, UnfavorableTerm):
severity = term.severity
elif isinstance(term, dict):
severity = term.get('severity', '')
else:
severity = getattr(term, 'severity', '')
if (severity == "critical"):
critical_terms.append(term)
elif (severity == "high"):
high_terms.append(term)
# Handle both object and dictionary formats for missing_protections
for protection in missing_protections:
importance = ""
if isinstance(protection, MissingProtection):
importance = protection.importance
elif isinstance(protection, dict):
importance = protection.get('importance', '')
else:
importance = getattr(protection, 'importance', '')
if (importance == "critical"):
critical_protections.append(protection)
# Create issues summary
if critical_terms:
issues_summary.append(f"{len(critical_terms)} CRITICAL unfavorable terms")
if high_terms:
issues_summary.append(f"{len(high_terms)} HIGH-risk unfavorable terms")
if critical_protections:
issues_summary.append(f"{len(critical_protections)} CRITICAL missing protections")
if not issues_summary:
issues_summary = ["Multiple concerning provisions identified"]
prompt = f"""
Risk Level: {overall_risk_score}/100 for {contract_type.value} contract
Top Issues:
{chr(10).join(issues_summary)}
Write ONE sentence (max 25 words) explaining what this risk score means for someone signing this contract.
Example: "This contract creates severe financial and legal exposure through unlimited liability and one-sided termination rights."
Your turn:
"""
try:
response = self.llm_manager.complete(prompt = prompt,
provider = provider,
temperature = 0.2,
max_tokens = 100,
)
explanation = response.text.strip() if response.success else self._fallback_risk_explanation(overall_risk_score)
# Ensure single sentence
sentences = explanation.split('.')
return sentences[0].strip() + '.' if sentences else explanation
except Exception as e:
log_error(e, context={"operation": "generate_overall_risk_explanation"})
return self._fallback_risk_explanation(overall_risk_score)
def _fallback_risk_explanation(self, risk_score: int) -> str:
"""
Fallback risk explanation
"""
if (risk_score >= 80):
return "This contract presents very high risk with multiple critical issues that require immediate attention and significant negotiation."
elif (risk_score >= 60):
return "This contract has substantial risk factors that need careful review and important modifications before signing."
elif (risk_score >= 40):
return "This contract has moderate risk with some areas that should be reviewed and potentially improved."
else:
return "This contract appears to have reasonable risk levels, but professional review is still recommended."
def _extract_key_concerns(self, unfavorable_terms: List[UnfavorableTerm], missing_protections: List[MissingProtection], clause_interpretations: List[ClauseInterpretation]) -> List[str]:
"""
Extract key concerns from all analysis results
"""
concerns = list()
# From unfavorable terms
critical_terms = list()
for term in unfavorable_terms:
if isinstance(term, UnfavorableTerm):
if (term.severity == "critical"):
critical_terms.append(term)
elif isinstance(term, dict):
if (term.get("severity") == "critical"):
critical_terms.append(term)
# Top 10 critical terms
for term in critical_terms[:10]:
term_name = ""
term_explanation = ""
if isinstance(term, UnfavorableTerm):
term_name = term.term
term_explanation = term.explanation
elif isinstance(term, dict):
term_name = term.get('term', 'Unfavorable term')
term_explanation = term.get('explanation', 'Standard risk identified')
concerns.append(f"Critical: {term_name} - {term_explanation}")
# From missing protections
critical_protections = list()
for protection in missing_protections:
if isinstance(protection, MissingProtection):
if (protection.importance == "critical"):
critical_protections.append(protection)
elif isinstance(protection, dict):
if (protection.get("importance") == "critical"):
critical_protections.append(protection)
# Top 10 critical protections
for protection in critical_protections[:10]:
protection_name = ""
if isinstance(protection, MissingProtection):
protection_name = protection.protection
elif isinstance(protection, dict):
protection_name = protection.get('protection', 'Critical protection')
concerns.append(f"Missing: {protection_name}")
# From clause interpretations
high_priority_clauses = [c for c in clause_interpretations if (c.negotiation_priority == "high")]
# Top 10 high priority clauses
for clause in high_priority_clauses[:10]:
concerns.append(f"High priority: {clause.clause_reference} - {clause.plain_english_summary}")
# Return top 20 concerns
return concerns[:20]
def _generate_negotiation_strategy(self, contract_type: ContractType, unfavorable_terms: List[UnfavorableTerm], missing_protections: List[MissingProtection],
overall_risk_score: int, provider: LLMProvider) -> str:
"""
Generate negotiation strategy using LLM
"""
prompt = f"""
As a negotiation expert, provide strategic advice for contract negotiations.
CONTRACT TYPE: {contract_type.value}
RISK LEVEL: {overall_risk_score}/100
KEY ISSUES: {len(unfavorable_terms)} unfavorable terms, {len(missing_protections)} missing protections
Provide 3-4 bullet points of negotiation strategy focusing on the most critical issues. Be practical and actionable.
Negotiation Strategy:
"""
try:
response = self.llm_manager.complete(prompt = prompt,
provider = provider,
temperature = 0.3,
max_tokens = 400,
)
return response.text.strip() if response.success else "Focus negotiation on the highest risk terms and missing critical protections identified in the analysis."
except Exception as e:
log_error(e, context = {"operation": "generate_negotiation_strategy"})
return "Prioritize addressing critical risk terms and essential missing protections during negotiations."
def _generate_market_comparison(self, contract_type: ContractType, overall_risk_score: int, provider: LLMProvider) -> str:
"""
Generate market comparison context
"""
prompt = f"""
Provide market context for this contract type.
CONTRACT TYPE: {contract_type.value}
RISK SCORE: {overall_risk_score}/100
How does this risk level compare to typical market standards for this type of contract? Provide 1-2 sentences of context.
Market Comparison:
"""
try:
response = self.llm_manager.complete(prompt = prompt,
provider = provider,
temperature = 0.2,
max_tokens = 200,
)
return response.text.strip() if response.success else "Compare with industry standards for similar contracts."
except Exception as e:
log_error(e, context = {"operation": "generate_market_comparison"})
return "Review against industry benchmarks for this contract type."
def interpret_specific_clause(self, clause_text: str, clause_reference: str = "Unknown", category: str = "general", provider: Optional[LLMProvider] = None) -> ClauseInterpretation:
"""
Interpret a specific clause text directly
"""
temp_clause = ExtractedClause(text = clause_text,
reference = clause_reference,
category = category,
confidence = 1.0,
start_pos = 0,
end_pos = len(clause_text),
extraction_method = "manual",
risk_indicators = [],
legal_bert_score = 0.0,
)
return self._interpret_single_clause(temp_clause, provider or self.default_provider)
def batch_interpret(self, clauses: List[ExtractedClause], provider: Optional[LLMProvider] = None) -> List[ClauseInterpretation]:
"""
Batch interpretation with progress tracking
"""
return self.interpret_clauses(clauses = clauses,
max_clauses = len(clauses),
provider = provider,
)
def get_unfavorable_interpretations(self, interpretations: List[ClauseInterpretation]) -> List[ClauseInterpretation]:
"""
Filter to only unfavorable clause interpretations
"""
unfavorable = [i for i in interpretations if (i.favorability == "unfavorable")]
log_info(f"Found {len(unfavorable)} unfavorable interpretations")
return unfavorable
def get_high_risk_interpretations(self, interpretations: List[ClauseInterpretation], min_risk_count: int = 2) -> List[ClauseInterpretation]:
"""
Filter to interpretations with multiple risks
"""
high_risk = [i for i in interpretations if (len(i.potential_risks) >= min_risk_count)]
log_info(f"Found {len(high_risk)} high-risk interpretations")
return high_risk |