File size: 24,273 Bytes
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
522f7a0
bdedf43
522f7a0
 
 
 
 
bdedf43
522f7a0
bdedf43
 
 
1099afe
 
bdedf43
1099afe
bdedf43
 
 
 
 
522f7a0
bdedf43
 
1099afe
bdedf43
1099afe
bdedf43
1099afe
 
 
bdedf43
1099afe
bdedf43
 
 
1099afe
bdedf43
 
522f7a0
bdedf43
 
 
 
1099afe
 
bdedf43
 
1099afe
522f7a0
1099afe
 
 
 
 
 
 
bdedf43
1099afe
 
bdedf43
1099afe
522f7a0
bdedf43
522f7a0
1099afe
522f7a0
bdedf43
 
 
 
522f7a0
1099afe
522f7a0
bdedf43
 
 
 
 
522f7a0
1099afe
bdedf43
 
 
 
 
 
522f7a0
1099afe
bdedf43
 
 
 
 
 
 
1099afe
bdedf43
 
 
 
 
 
 
1099afe
bdedf43
 
1099afe
bdedf43
1099afe
bdedf43
1099afe
bdedf43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099afe
bdedf43
 
1099afe
522f7a0
1099afe
522f7a0
1099afe
bdedf43
522f7a0
 
 
 
 
 
 
bdedf43
522f7a0
 
 
 
 
 
bdedf43
 
 
 
 
 
 
 
1099afe
bdedf43
 
1099afe
522f7a0
1099afe
bdedf43
1099afe
bdedf43
 
522f7a0
bdedf43
 
 
 
 
 
 
522f7a0
bdedf43
 
 
 
 
 
1099afe
 
bdedf43
1099afe
522f7a0
1099afe
bdedf43
1099afe
bdedf43
 
522f7a0
bdedf43
 
522f7a0
 
bdedf43
 
 
522f7a0
bdedf43
 
 
 
 
 
 
1099afe
bdedf43
 
 
522f7a0
bdedf43
 
1099afe
bdedf43
522f7a0
bdedf43
 
 
 
 
 
 
 
 
522f7a0
 
 
 
 
 
 
1099afe
bdedf43
 
 
 
 
 
1099afe
bdedf43
 
 
1099afe
bdedf43
1099afe
bdedf43
 
 
1099afe
bdedf43
 
 
1099afe
bdedf43
 
 
1099afe
bdedf43
 
 
 
 
 
 
 
 
 
 
1099afe
 
bdedf43
 
1099afe
bdedf43
1099afe
bdedf43
 
1099afe
bdedf43
 
1099afe
bdedf43
 
522f7a0
1099afe
bdedf43
1099afe
bdedf43
 
1099afe
bdedf43
522f7a0
 
bdedf43
1099afe
bdedf43
 
 
 
 
 
 
 
 
 
522f7a0
 
1099afe
bdedf43
1099afe
bdedf43
 
 
1099afe
bdedf43
 
1099afe
bdedf43
 
 
 
1099afe
 
bdedf43
1099afe
522f7a0
1099afe
522f7a0
 
 
 
 
1099afe
bdedf43
1099afe
bdedf43
1099afe
522f7a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdedf43
1099afe
522f7a0
bdedf43
 
1099afe
bdedf43
 
1099afe
bdedf43
 
 
 
 
1099afe
bdedf43
1099afe
bdedf43
522f7a0
bdedf43
1099afe
522f7a0
1099afe
bdedf43
522f7a0
 
1099afe
bdedf43
 
1099afe
bdedf43
 
 
 
1099afe
bdedf43
 
 
 
 
 
 
1099afe
bdedf43
1099afe
bdedf43
 
 
 
1099afe
bdedf43
 
 
 
 
 
 
 
1099afe
bdedf43
1099afe
 
bdedf43
1099afe
bdedf43
1099afe
bdedf43
 
 
1099afe
bdedf43
 
 
 
 
 
 
 
 
 
 
 
 
1099afe
 
bdedf43
1099afe
bdedf43
 
 
 
 
 
 
 
1099afe
bdedf43
 
1099afe
bdedf43
 
 
 
 
 
 
 
1099afe
bdedf43
 
1099afe
bdedf43
 
1099afe
bdedf43
 
1099afe
bdedf43
 
1099afe
 
bdedf43
1099afe
bdedf43
 
1099afe
bdedf43
 
1099afe
bdedf43
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1099afe
bdedf43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# DEPENDENCIES
import sys
from typing import Any
from typing import List
from typing import Dict
from typing import Tuple
from pathlib import Path
from typing import Optional
from dataclasses import field
from collections import defaultdict

# Add parent directory to path for imports
sys.path.append(str(Path(__file__).parent.parent))

from utils.logger import log_info
from utils.logger import log_error
from config.risk_rules import RiskRules
from config.risk_rules import ContractType
from services.data_models import RiskScore
from services.term_analyzer import TermAnalyzer
from utils.logger import ContractAnalyzerLogger
from services.data_models import ExtractedClause
from services.data_models import UnfavorableTerm
from services.data_models import MissingProtection
from services.data_models import RiskBreakdownItem
from services.protection_checker import ProtectionChecker
from services.clause_extractor import RiskClauseExtractor
from services.contract_classifier import ContractCategory
from services.contract_classifier import ContractClassifier
from services.clause_extractor import ComprehensiveClauseExtractor


class RiskAnalyzer:
    """
    Orchestrates all analysis components and calculates comprehensive risk scores
    
    Analysis Pipeline:
    1. Contract Classification
    2. Clause Extraction 
    3. Term Analysis 
    4. Protection Checking 
    5. Risk Scoring
    """
    def __init__(self, model_loader):
        """
        Initialize the risk analyzer with all required components
        
        Arguments:
        ----------
            model_loader : ModelLoader instance for accessing AI models
        """
        self.model_loader           = model_loader
        self.rules                  = RiskRules()
        self.logger                 = ContractAnalyzerLogger.get_logger()
        
        # Initialize all analysis components
        self.contract_classifier    = ContractClassifier(model_loader = model_loader)
        self.risk_clause_extractor  = None  # Will be initialized with contract type
        self.term_analyzer          = TermAnalyzer()
        self.protection_checker     = ProtectionChecker()
        
        log_info("RiskAnalyzer initialized - All components ready")
    

    @ContractAnalyzerLogger.log_execution_time("analyze_contract_risk")
    def analyze_contract_risk(self, contract_text: str) -> RiskScore:
        """
        Comprehensive contract risk analysis
        
        Arguments:
        ----------
            contract_text { str } : Full contract text
        
        Returns:
        --------
               { RiskScore }      : Complete risk assessment with 0-100 score and detailed breakdown
        """
        
        log_info("Starting Comprehensive Contract Risk Analysis...", text_length = len(contract_text))
        
        # Contract Classification
        contract_category   = self._classify_contract(contract_text = contract_text)
        log_info("Contract classified", contract_type = contract_category.category)
        
        # Clause Extraction: RiskClauseExtractor 
        clauses             = self._extract_clauses(contract_text     = contract_text, 
                                                    contract_category = contract_category,
                                                   )

        log_info("Clauses extracted", num_clauses = len(clauses))
        
        # Unfavourable Term Analysis 
        unfavorable_terms   = self._analyze_unfavorable_terms(contract_text     = contract_text,
                                                              clauses           = clauses, 
                                                              contract_category = contract_category,
                                                             )

        log_info("Unfavorable terms analyzed", num_unfavorable_terms = len(unfavorable_terms))
        
        # MISSING PROTECTIONS ANALYSIS
        missing_protections = self._analyze_missing_protections(contract_text     = contract_text, 
                                                                clauses           = clauses, 
                                                                contract_category = contract_category,
                                                               )

        log_info("Missing protections analyzed", num_missing_protections = len(missing_protections))
        
        # RISK SCORING & AGGREGATION
        risk_score          = self._calculate_comprehensive_risk(contract_category    = contract_category,
                                                                 clauses              = clauses,
                                                                 unfavorable_terms    = unfavorable_terms,
                                                                 missing_protections  = missing_protections,
                                                                 contract_text        = contract_text,
                                                                )
        
        log_info("Risk Analysis Complete", 
                 overall_score = risk_score.overall_score,
                 risk_level    = risk_score.risk_level,
                 contract_type = risk_score.contract_type,
                )
        
        return risk_score
    

    def _classify_contract(self, contract_text: str):
        """
        Classify contract type
        """
        log_info("Classifying contract type...")
        
        try:
            classification = self.contract_classifier.classify_contract(contract_text = contract_text)
            
            log_info("Contract classification successful",
                     category    = classification.category,
                     confidence  = classification.confidence,
                     subcategory = classification.subcategory)
            
            return classification
            
        except Exception as e:
            log_error(e, context = {"component": "RiskAnalyzer", "operation": "contract_classification"})
            
            # Fallback to general classification
            return ContractCategory(category          = "general",
                                    subcategory       = None,
                                    confidence        = 0.5,
                                    reasoning         = ["Classification failed, using general fallback"],
                                    detected_keywords = [],
                                   )
    

    def _extract_clauses(self, contract_text: str, contract_category) -> List:
        """
        Extract clauses from contract using RiskClauseExtractor
        """
        log_info("Extracting RISK-FOCUSED clauses from contract...")
        
        try:
            # Get contract type enum
            contract_type_enum         = self._get_contract_type_enum(category_str = contract_category.category)
            
            # Initialize RiskClauseExtractor (NOT ComprehensiveClauseExtractor)
            self.risk_clause_extractor = RiskClauseExtractor(model_loader  = self.model_loader,
                                                             contract_type = contract_type_enum,
                                                            )
            
            # Use RiskClauseExtractor which outputs risk categories
            clauses                    = self.risk_clause_extractor.extract_risk_clauses(contract_text = contract_text,
                                                                                         max_clauses   = 50,
                                                                                        )
            
            log_info("Risk-focused clause extraction successful",
                     total_clauses = len(clauses),
                     categories    = [c.category for c in clauses])
            
            return clauses
            
        except Exception as e:
            log_error(e, context = {"component": "RiskAnalyzer", "operation": "clause_extraction"})
            return []
    

    def _analyze_unfavorable_terms(self, contract_text: str, clauses: List, contract_category) -> List[UnfavorableTerm]:
        """
        Analyze for unfavorable terms (using risk categories from RiskClauseExtractor)
        """
        log_info("Analyzing unfavorable terms...")
        
        try:
            # Initialize term analyzer with contract type
            contract_type_enum = self._get_contract_type_enum(category_str = contract_category.category)
            self.term_analyzer = TermAnalyzer(contract_type = contract_type_enum)
            
            unfavorable_terms = self.term_analyzer.analyze_unfavorable_terms(contract_text = contract_text,
                                                                             clauses       = clauses)
            
            log_info("Unfavorable terms analysis successful",
                     total_terms = len(unfavorable_terms),
                     critical    = sum(1 for t in unfavorable_terms if (t.severity == "critical")))
            
            return unfavorable_terms
            
        except Exception as e:
            log_error(e, context = {"component": "RiskAnalyzer", "operation": "unfavorable_terms_analysis"})
            return []
    

    def _analyze_missing_protections(self, contract_text: str, clauses: List, contract_category) -> List[MissingProtection]:
        """
        Analyze for missing protections
        """
        log_info("Analyzing missing protections...")
        
        try:
            # Initialize protection checker with contract type
            contract_type_enum      = self._get_contract_type_enum(category_str = contract_category.category)
            self.protection_checker = ProtectionChecker(contract_type = contract_type_enum)
            
            missing_protections     = self.protection_checker.check_missing_protections(contract_text = contract_text,
                                                                                        clauses       = clauses)
            
            log_info("Missing protections analysis successful",
                     total_missing = len(missing_protections),
                     critical      = sum(1 for p in missing_protections if (p.importance == "critical")))
            
            return missing_protections
            
        except Exception as e:
            log_error(e, context = {"component": "RiskAnalyzer", "operation": "missing_protections_analysis"})
            return []
    

    def _calculate_comprehensive_risk(self, contract_category, clauses: List, unfavorable_terms: List[UnfavorableTerm], missing_protections: List[MissingProtection],
                                      contract_text: str) -> RiskScore:
        """
        Calculate comprehensive risk score using all analysis results
        """
        log_info("Calculating comprehensive risk score...")
        
        # Get contract type for risk rule adjustments
        contract_type_enum = self._get_contract_type_enum(category_str = contract_category.category)
        adjusted_weights   = self.rules.get_adjusted_weights(contract_type_enum)
        
        # Initialize scoring containers
        category_scores    = defaultdict(int)
        detailed_findings  = defaultdict(list)
        risk_factors       = list()
        
        # Calculate risk for each category
        for risk_category in adjusted_weights.keys():
            category_risk                    = self._calculate_category_risk(risk_category        = risk_category,
                                                                             contract_type        = contract_type_enum,
                                                                             clauses              = clauses,
                                                                             unfavorable_terms    = unfavorable_terms,
                                                                             missing_protections  = missing_protections,
                                                                             contract_text        = contract_text,
                                                                            )
            
            category_scores[risk_category]   = category_risk["score"]
            detailed_findings[risk_category] = category_risk["findings"]
            
            # Add to risk factors if high risk
            if (category_risk["score"] >= self.rules.RISK_THRESHOLDS["high"]):
                risk_factors.append(risk_category)
        
        # Calculate weighted overall score
        overall_score            = self._calculate_weighted_score(category_scores   = category_scores,
                                                                  adjusted_weights  = adjusted_weights)
        
        risk_level               = self._get_risk_level(score = overall_score)
        
        # Create risk breakdown
        risk_breakdown           = self._create_risk_breakdown(category_scores   = dict(category_scores),
                                                               detailed_findings = dict(detailed_findings))
        
        # Benchmark comparison
        benchmark_comparison     = self._compare_to_benchmarks(category_scores = category_scores,
                                                               contract_type   = contract_type_enum)
        
        # Prepare output data
        unfavorable_terms_dict   = [term.to_dict() for term in unfavorable_terms]
        missing_protections_dict = [protection.to_dict() for protection in missing_protections]
        
        return RiskScore(overall_score        = overall_score,
                         risk_level           = risk_level,
                         category_scores      = dict(category_scores),
                         risk_factors         = risk_factors,
                         detailed_findings    = dict(detailed_findings),
                         benchmark_comparison = benchmark_comparison,
                         risk_breakdown       = risk_breakdown,
                         contract_type        = contract_category.category,
                         unfavorable_terms    = unfavorable_terms_dict,
                         missing_protections  = missing_protections_dict,
                        )
    

    def _calculate_category_risk(self, risk_category: str, contract_type: ContractType, clauses: List, unfavorable_terms: List[UnfavorableTerm],
                                 missing_protections: List[MissingProtection], contract_text: str) -> Dict:
        """
        Calculate risk score for a specific category using all available data
        """
        base_score     = 0
        findings       = list()
        
        # Score from unfavorable terms in this category
        category_terms = [t for t in unfavorable_terms if (t.category == risk_category)]
        
        for term in category_terms:
            # Scale appropriately
            base_score += term.risk_score * 0.4  

            findings.append(f"{term.term}: {term.explanation}")
        
        # Score from missing protections affecting this category
        category_protections = [p for p in missing_protections if risk_category in p.categories]
        
        for protection in category_protections:
            base_score += protection.risk_score * 0.3
            
            findings.append(f"Missing: {protection.protection}")
        
        # Score from clauses in this category
        category_clauses = self._get_clauses_for_risk_category(clauses         = clauses,
                                                               risk_category   = risk_category,
                                                              )
        
        for clause in category_clauses:
            clause_risk = self._analyze_clause_risk(clause          = clause,
                                                    risk_category   = risk_category,
                                                    contract_type   = contract_type,
                                                   )

            base_score += clause_risk["score"] * 0.3

            findings.extend(clause_risk["findings"])
        
        # Apply contract-type specific adjustments
        category_weight = self.rules.CONTRACT_TYPE_ADJUSTMENTS.get(contract_type.value, {}).get(risk_category, 1.0)
        adjusted_score  = base_score * category_weight
        
        # Cap score between 0-100
        final_score     = max(0, min(100, int(adjusted_score)))
        
        # Top 25 findings
        return {"score"    : final_score,
                "findings" : findings[:25] 
               }
    

    def _get_clauses_for_risk_category(self, clauses: List, risk_category: str) -> List:
        """
        Map clauses to risk categories (now clauses are already in risk categories)
        """
        # clauses.category is already a risk category from RiskClauseExtractor
        clauses_for_risk_category = [c for c in clauses if (c.category == risk_category)]
        
        return clauses_for_risk_category


    def _analyze_clause_risk(self, clause, risk_category: str, contract_type: ContractType) -> Dict:
        """
        Analyze individual clause risk using RiskRules factors
        """
        risk_factors        = self.rules.CLAUSE_RISK_FACTORS
        
        # Map RISK category (e.g., "restrictive_covenants") to CLAUSE category (e.g., "non_compete")
        factor_mapping      = {"restrictive_covenants" : "non_compete",
                               "termination_rights"    : "termination", 
                               "liability_indemnity"   : "indemnification",
                               "compensation_benefits" : "compensation",
                               "intellectual_property" : "intellectual_property",
                               "confidentiality"       : "confidentiality",
                               "penalties_liability"   : "liability",
                               "warranties"            : "warranty",
                               "dispute_resolution"    : "dispute_resolution",
                               "assignment_change"     : "assignment", 
                               "insurance"             : "insurance",
                               "force_majeure"         : "force_majeure",
                              }
        
        clause_category_key = factor_mapping.get(risk_category)
        
        if not clause_category_key or clause_category_key not in risk_factors:
            return {"score": 0, "findings": []}
        
        factor_config = risk_factors[clause_category_key]
        base_risk     = factor_config.get("base_risk", 50)
        text_lower    = clause.text.lower()
        
        risk_score    = base_risk
        findings      = list()
        
        # Check red flags
        for red_flag, adjustment in factor_config["red_flags"].items():
            if red_flag in text_lower:
                risk_score += adjustment
                severity    = "increases" if adjustment > 0 else "decreases"

                findings.append(f"Red flag: '{red_flag}' ({severity} risk by {abs(adjustment)})")
        
        # Apply contract-type specific multiplier
        type_adjustments    = self.rules.CONTRACT_TYPE_ADJUSTMENTS.get(contract_type.value, {})
        category_multiplier = type_adjustments.get(risk_category, 1.0)
        
        risk_score         *= category_multiplier
        
        return {"score"    : max(0, min(100, risk_score)),
                "findings" : findings,
               }
    

    def _calculate_weighted_score(self, category_scores: Dict[str, int], adjusted_weights: Dict[str, float]) -> int:
        """
        Calculate weighted overall risk score
        """
        total_score  = 0
        total_weight = 0
        
        for category, score in category_scores.items():
            weight        = adjusted_weights.get(category, 1.0)
            total_score  += score * weight
            total_weight += weight
        
        return int(total_score / total_weight) if (total_weight > 0) else 50
    

    def _get_risk_level(self, score: int) -> str:
        """
        Convert numeric score to risk level
        """
        if (score >= self.rules.RISK_THRESHOLDS["critical"]):
            return "CRITICAL"
        
        elif (score >= self.rules.RISK_THRESHOLDS["high"]):
            return "HIGH"
        
        elif (score >= self.rules.RISK_THRESHOLDS["medium"]):
            return "MEDIUM"
        
        elif (score >= self.rules.RISK_THRESHOLDS["low"]):
            return "LOW"
        
        return "VERY LOW"
    

    def _create_risk_breakdown(self, category_scores: Dict[str, int], detailed_findings: Dict[str, List[str]]) -> List[RiskBreakdownItem]:
        """
        Create detailed risk breakdown for reporting
        """
        breakdown             = list()
        
        category_descriptions = self.rules.CATEGORY_DESCRIPTIONS
        
        for category, score in category_scores.items():
            if category in category_descriptions:
                # Get appropriate description based on score
                if (score >= 70):
                    risk_level = "high"
                
                elif (score >= 40):
                    risk_level = "medium"
                
                else:
                    risk_level = "low"
                
                summary = category_descriptions[category][risk_level]
            
            else:
                summary = f"Risk assessment for {category.replace('_', ' ')}"
            
            findings = detailed_findings.get(category, [])
            
            breakdown.append(RiskBreakdownItem(category = category.replace('_', ' ').title(),
                                               score    = score,
                                               summary  = summary,
                                               findings = findings[:25],  # Top 25 findings
                                              )
                            )
        
        # Sort by score (highest risk first)
        breakdown.sort(key = lambda x: x.score, reverse = True)
        
        return breakdown
    

    def _compare_to_benchmarks(self, category_scores: Dict[str, int], contract_type: ContractType) -> Dict[str, str]:
        """
        Compare risk scores to industry benchmarks
        """
        comparisons   = dict()
        
        # Overall risk comparison
        overall_score = sum(category_scores.values()) / len(category_scores) if category_scores else 50
        
        if (overall_score >= 70):
            comparisons["overall"] = "βœ— Significantly above market risk levels"
        
        elif (overall_score >= 55):
            comparisons["overall"] = "⚠ Above typical market risk levels"
        
        elif (overall_score >= 45):
            comparisons["overall"] = "βœ“ Within typical market risk range"
        
        else:
            comparisons["overall"] = "βœ“ Below market risk levels (favorable)"
        
        # Key category comparisons
        high_risk_categories = [cat for cat, score in category_scores.items() if score >= 60]
        
        if high_risk_categories:
            comparisons["high_risk_areas"] = f"High risk in: {', '.join(high_risk_categories)}"
        
        return comparisons
    

    def _get_contract_type_enum(self, category_str: str) -> ContractType:
        """
        Convert category string to ContractType enum
        """
        mapping = {"employment"  : ContractType.EMPLOYMENT,
                   "consulting"  : ContractType.CONSULTING,
                   "nda"         : ContractType.NDA,
                   "software"    : ContractType.SOFTWARE,
                   "service"     : ContractType.SERVICE,
                   "partnership" : ContractType.PARTNERSHIP,
                   "lease"       : ContractType.LEASE,
                   "purchase"    : ContractType.PURCHASE,
                   "general"     : ContractType.GENERAL,
                  }
        
        return mapping.get(category_str, ContractType.GENERAL)