File size: 17,850 Bytes
1099afe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
# DEPENDENCIES
import re
from typing import Any
from typing import List
from typing import Dict
from typing import Optional
from difflib import SequenceMatcher

# Advanced NLP (optional but recommended)
try:
    import spacy
    SPACY_AVAILABLE = True

except ImportError:
    SPACY_AVAILABLE = False
    print("[TextProcessor] spaCy not available. Install with: pip install spacy && python -m spacy download en_core_web_sm")

# Language detection
try:
    from langdetect import detect, LangDetectException
    LANGDETECT_AVAILABLE = True
    
except ImportError:
    LANGDETECT_AVAILABLE = False


class TextProcessor:
    """
    Text processing and normalization utilities
    """
    def __init__(self, use_spacy: bool = True):
        """
        Initialize text processor
        
        Arguments:
        ----------
            use_spacy { bool } : Whether to use spaCy for advanced NLP (if available)
        """
        self.nlp = None
        
        if use_spacy and SPACY_AVAILABLE:
            try:
                self.nlp = spacy.load("en_core_web_sm")

                print("[TextProcessor] spaCy model loaded successfully")
            
            except OSError:
                print("[TextProcessor] spaCy model not found. Run: python -m spacy download en_core_web_sm")
                self.nlp = None
    

    @staticmethod
    def normalize_text(text: str, lowercase: bool = True, remove_special_chars: bool = False) -> str:
        """
        Normalize text for analysis
        
        Arguments:
        ----------
            text                 { str }  : Input text

            lowercase            { bool } : Convert to lowercase

            remove_special_chars { bool } : Remove special characters
        
        Returns:
        --------
                      { str }             : Normalized text
        """
        if lowercase:
            text = text.lower()
        
        # Remove extra whitespace
        text = re.sub(r'\s+', ' ', text)
        
        if remove_special_chars:
            # Keep alphanumeric and basic punctuation
            text = re.sub(r'[^\w\s.,;:!?()\-\'\"&@#$%]', '', text)
        
        return text.strip()
    

    @staticmethod
    def split_into_paragraphs(text: str, min_length: int = 20) -> List[str]:
        """
        Split text into paragraphs
        
        Arguments:
        ----------
            text       { str } : Input text

            min_length { int } : Minimum paragraph length in characters
        
        Returns:
        --------
                { list }       : List of paragraphs
        """
        # Split on double newlines
        paragraphs = re.split(r'\n\s*\n', text)
        
        # Filter short and empty paragraphs
        return [p.strip() for p in paragraphs if len(p.strip()) >= min_length]
    

    @staticmethod
    def extract_sentences(text: str, min_length: int = 10) -> List[str]:
        """
        Extract sentences from text (basic method)
        
        Arguments:
        ----------
            text       { str } : Input text

            min_length { int  } : Minimum sentence length in characters
        
        Returns:
        --------
                { list }        : List of sentences
        """
        # Simple sentence splitting on .!?
        sentences = re.split(r'[.!?]+', text)
        
        # Clean and filter
        sentences = [s.strip() for s in sentences if len(s.strip()) >= min_length]
        
        return sentences
    

    def extract_sentences_advanced(self, text: str) -> List[Dict[str, Any]]:
        """
        Extract sentences with NER and metadata using spaCy
        
        Args:
            text: Input text
        
        Returns:
            List of sentence dictionaries with entities and metadata
        """
        if not self.nlp:
            # Fallback to basic extraction
            basic_sentences = self.extract_sentences(text)

            return [{"text" : s, "entities" : [], "start_char" : 0, "end_char" : 0} for s in basic_sentences]
        
        # Limit to 100K chars for performance
        doc       = self.nlp(text[:100000])  
        sentences = list()
        
        for sent in doc.sents:
            sentences.append({"text"       : sent.text.strip(),
                              "entities"   : [(ent.text, ent.label_) for ent in sent.ents],
                              "start_char" : sent.start_char,
                              "end_char"   : sent.end_char,
                              "tokens"     : [token.text for token in sent],
                            })
        
        return sentences
    
    
    @staticmethod
    def extract_legal_entities(text: str) -> Dict[str, List[str]]:
        """
        Extract legal-specific entities (parties, dates, amounts, references)
        
        Arguments:
        ----------
            text { str } : Input text
        
        Returns:
        --------
            { dict }     : Dictionary of extracted entities by type
        """
        entities       = {"parties"       : [],
                          "dates"         : [],
                          "amounts"       : [],
                          "addresses"     : [],
                          "references"    : [],
                          "emails"        : [],
                          "phone_numbers" : [],
                         }
        
        # Party names (PARTY A, "the Employee", Company Name Inc.)
        party_patterns = [r'(?:PARTY|Party)\s+[A-Z]',
                          r'"the\s+\w+"',
                          r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\s+(?:Inc|LLC|Corp|Ltd|Limited|Company)\.?',
                          r'(?:the\s+)?(Employer|Employee|Consultant|Contractor|Client|Vendor|Supplier|Landlord|Tenant|Buyer|Seller)',
                         ]

        for pattern in party_patterns:
            matches = re.findall(pattern, text)

            entities["parties"].extend(matches)
        
        # Dates (various formats)
        date_patterns = [r'\b\d{1,2}[/-]\d{1,2}[/-]\d{2,4}\b',
                         r'\b(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{1,2},?\s+\d{4}\b',
                         r'\b\d{1,2}\s+(?:January|February|March|April|May|June|July|August|September|October|November|December)\s+\d{4}\b'
                        ]

        for pattern in date_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)

            entities["dates"].extend(matches)
        
        # Legal references (Section 5.2, Clause 11.1, Article III)
        ref_patterns = [r'(?:Section|Clause|Article|Paragraph|Exhibit|Schedule|Appendix)\s+(?:\d+(?:\.\d+)*|[IVXLCDM]+)']

        for pattern in ref_patterns:
            matches = re.findall(pattern, text, re.IGNORECASE)

            entities["references"].extend(matches)
        
        # Monetary amounts
        entities["amounts"]       = TextProcessor.extract_monetary_amounts(text)
        
        # Email addresses
        email_pattern             = r'\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+\.[A-Z|a-z]{2,}\b'
        entities["emails"]        = re.findall(email_pattern, text)
        
        # Phone numbers (US format)
        phone_pattern             = r'\b(?:\+?1[-.\s]?)?\(?([0-9]{3})\)?[-.\s]?([0-9]{3})[-.\s]?([0-9]{4})\b'
        phone_matches             = re.findall(phone_pattern, text)
        entities["phone_numbers"] = ['-'.join(match) for match in phone_matches]
        
        # Deduplicate
        for key in entities:
            entities[key] = list(set(entities[key]))
        
        return entities
    

    @staticmethod
    def count_words(text: str) -> int:
        """
        Count words in text
        """
        return len(text.split())
    

    @staticmethod
    def extract_numbers(text: str) -> List[str]:
        """
        Extract all numbers from text
        """
        return re.findall(r'\d+', text)
    

    @staticmethod
    def extract_monetary_amounts(text: str) -> List[str]:
        """
        Extract monetary amounts from text
        
        Returns:
        --------
            { list }    : List of monetary amounts (e.g., ['$1,000', '$2,500.00'])
        """
        # Match patterns like $1,000 or $1000.00 or USD 1,000
        patterns = [r'\$[\d,]+(?:\.\d{2})?',
                    r'USD\s*[\d,]+(?:\.\d{2})?',
                    r'EUR\s*[\d,]+(?:\.\d{2})?',
                    r'GBP\s*[\d,]+(?:\.\d{2})?'
                   ]
        
        amounts  = list()

        for pattern in patterns:
            amounts.extend(re.findall(pattern, text, re.IGNORECASE))
        
        return amounts

    
    @staticmethod
    def extract_durations(text: str) -> List[Dict[str, str]]:
        """
        Extract time durations (e.g., "6 months", "2 years")
        
        Returns:
        --------
            { list }    : List of duration dictionaries with 'amount' and 'unit'
        """
        pattern = r'(\d+)\s*(day|week|month|year)s?'
        matches = re.findall(pattern, text, re.IGNORECASE)
        
        return [{"amount": m[0], "unit": m[1].lower()} for m in matches]


    @staticmethod
    def extract_percentages(text: str) -> List[str]:
        """
        Extract percentages from text
        """
        return re.findall(r'\d+(?:\.\d+)?%', text)
    

    @staticmethod
    def chunk_text_for_embedding(text: str, chunk_size: int = 512, overlap: int = 50) -> List[Dict[str, Any]]:
        """
        Chunk text with overlap for embedding models (preserves sentence boundaries)
        
        Arguments:
        ----------
            text       { str } : Input text

            chunk_size { int } : Maximum chunk size in words
            
            overlap    { int } : Number of words to overlap between chunks
        
        Returns:
        --------
                { list }       : List of chunk dictionaries with metadata
        """
        sentences          = TextProcessor.extract_sentences(text)
        chunks             = list()
        current_chunk      = list()
        current_length     = 0
        start_sentence_idx = 0
        
        for i, sentence in enumerate(sentences):
            sentence_words  = sentence.split()
            sentence_length = len(sentence_words)
            
            if (((current_length + sentence_length) > chunk_size) and current_chunk):
                # Save current chunk
                chunks.append({"text"           : " ".join(current_chunk),
                               "start_sentence" : start_sentence_idx,
                               "end_sentence"   : i - 1,
                               "word_count"     : current_length,
                               "chunk_id"       : len(chunks),
                             })
                
                # Start new chunk with overlap
                overlap_sentences  = current_chunk[-2:] if (len(current_chunk) > 2) else current_chunk
                current_chunk      = overlap_sentences + [sentence]
                current_length     = sum(len(s.split()) for s in current_chunk)
                start_sentence_idx = max(0, i - len(overlap_sentences))

            else:
                current_chunk.append(sentence)
                current_length += sentence_length
        
        # Add final chunk
        if current_chunk:
            chunks.append({"text"           : " ".join(current_chunk),
                           "start_sentence" : start_sentence_idx,
                           "end_sentence"   : len(sentences) - 1,
                           "word_count"     : current_length,
                           "chunk_id"       : len(chunks),
                         })
        
        return chunks
    

    @staticmethod
    def text_similarity(text1: str, text2: str) -> float:
        """
        Calculate similarity between two texts (0-1 scale)
        
        Arguments:
        ----------
            text1 { str } : First text

            text2 { str } : Second text
        
        Returns:
        --------
            { float }     : Similarity score (0.0 = completely different, 1.0 = identical)
        """
        return SequenceMatcher(None, text1.lower(), text2.lower()).ratio()
    

    @staticmethod
    def deduplicate_clauses(clauses: List[str], threshold: float = 0.85) -> List[str]:
        """
        Remove near-duplicate clauses
        
        Arguments:
        ----------
            clauses   { list }  : List of clause texts

            threshold { float } : Similarity threshold for deduplication (0.0-1.0)
        
        Returns:
        --------
                { list }        : List of unique clauses
        """
        unique = list()
        
        for clause in clauses:
            is_duplicate = any(TextProcessor.text_similarity(clause, existing) > threshold for existing in unique)

            if not is_duplicate:
                unique.append(clause)
        
        return unique
    

    @staticmethod
    def detect_language(text: str) -> str:
        """
        Detect text language
        
        Arguments:
        ----------
            text { str } : Input text
        
        Returns:
        --------
             { str }     : ISO 639-1 language code (e.g., 'en', 'es', 'fr')
        """
        if not LANGDETECT_AVAILABLE:
            # Default to English
            return "en"  
        
        try:
            # Use first 1000 chars for detection
            return detect(text[:1000])

        except LangDetectException:
            return "en"
    
    
    @staticmethod
    def get_text_statistics(text: str) -> Dict[str, Any]:
        """
        Get comprehensive text statistics
        
        Returns:
        --------
            { dict }    : Dictionary with character count, word count, sentence count, etc.
        """
        sentences  = TextProcessor.extract_sentences(text)
        paragraphs = TextProcessor.split_into_paragraphs(text)
        words      = text.split()
        
        return {"character_count"        : len(text),
                "word_count"             : len(words),
                "sentence_count"         : len(sentences),
                "paragraph_count"        : len(paragraphs),
                "avg_words_per_sentence" : len(words) / len(sentences) if sentences else 0,
                "avg_chars_per_word"     : len(text) / len(words) if words else 0,
                "language"               : TextProcessor.detect_language(text),
               }
    

    @staticmethod
    def highlight_keywords(text: str, keywords: List[str], highlight_format: str = "**{}**") -> str:
        """
        Highlight keywords in text (for display purposes)
        
        Arguments:
        ----------
            text             { str }  : Input text

            keywords         { list } : List of keywords to highlight
            
            highlight_format { str  } : Format string with {} placeholder (default: Markdown bold)
        
        Returns:
        --------
                    { str }           : Text with highlighted keywords
        """
        for keyword in keywords:
            pattern = re.compile(re.escape(keyword), re.IGNORECASE)
            text    = pattern.sub(lambda m: highlight_format.format(m.group(0)), text)
        
        return text
    
    
    @staticmethod
    def extract_numbered_sections(text: str) -> List[Dict[str, Any]]:
        """
        Extract numbered sections/clauses (1.1, 1.2, Article 5, etc.)
        
        Returns:
        --------
            { list }    : List of section dictionaries with number and text
        """
        patterns = [(r'(\d+\.\d+(?:\.\d+)*)\.\s*([^\n]{20,}?)(?=\n\s*\d+\.\d+|\n\n|$)', 'numbered'),
                    (r'(Article\s+(?:\d+|[IVXLCDM]+))\.\s*([^\n]{20,}?)(?=\nArticle|\n\n|$)', 'article'),
                    (r'(Section\s+(?:\d+|[IVXLCDM]+))\.\s*([^\n]{20,}?)(?=\nSection|\n\n|$)', 'section'),
                    (r'(Clause\s+\d+(?:\.\d+)*)\.\s*([^\n]{20,}?)(?=\nClause|\n\n|$)', 'clause'),
                   ]
        
        sections = list()

        for pattern, section_type in patterns:
            matches = re.finditer(pattern, text, re.IGNORECASE | re.DOTALL)
            
            for match in matches:
                sections.append({"reference" : match.group(1).strip(),
                                 "text"      : match.group(2).strip(),
                                 "type"      : section_type,
                                 "start_pos" : match.start(),
                                 "end_pos"   : match.end(),
                               })
        
        # Sort by position
        sections.sort(key = lambda x: x['start_pos'])
        
        return sections
    

    @staticmethod
    def clean_legal_text(text: str) -> str:
        """
        Clean legal text by removing boilerplate artifacts
        
        Arguments:
        ----------
            text { str } : Input legal text
        
        Returns:
        --------
             { str }     : Cleaned text
        """
        # Remove "Page X of Y" markers
        text = re.sub(r'Page\s+\d+\s+of\s+\d+', '', text, flags = re.IGNORECASE)
        
        # Remove "[Signature Page Follows]" type markers
        text = re.sub(r'\[.*?(?:Signature|Initial|Page).*?\]', '', text, flags = re.IGNORECASE)
        
        # Remove excessive underscores (signature lines)
        text = re.sub(r'_{3,}', '', text)
        
        # Remove "CONFIDENTIAL" watermarks
        text = re.sub(r'\b(CONFIDENTIAL|DRAFT|INTERNAL USE ONLY)\b', '', text, flags = re.IGNORECASE)
        
        # Clean up resulting whitespace
        text = re.sub(r'\n{3,}', '\n\n', text)
        text = re.sub(r' {2,}', ' ', text)
        
        return text.strip()