File size: 19,140 Bytes
3275882
1c10d3b
3275882
44b176d
3275882
 
44b176d
 
 
c8c2927
1bd58ac
 
 
3275882
34234e4
 
1bd58ac
1c10d3b
 
 
 
 
 
 
34234e4
1c10d3b
34234e4
 
1c10d3b
 
 
 
 
 
 
3275882
 
 
 
 
1c10d3b
3275882
 
 
 
 
128ac44
34234e4
 
 
 
 
1bd58ac
128ac44
1bd58ac
3275882
c8c2927
 
 
3275882
 
c8c2927
 
34234e4
 
 
 
 
 
 
 
 
c8c2927
34234e4
 
 
 
 
 
c8c2927
3275882
 
 
 
 
 
 
 
 
 
 
 
 
 
1c10d3b
3275882
 
 
 
1c10d3b
 
 
3275882
 
1c10d3b
3275882
128ac44
 
3275882
1c10d3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3275882
 
128ac44
3275882
 
1c10d3b
 
 
 
34234e4
 
3275882
 
 
 
 
 
c8c2927
3275882
c8c2927
 
 
 
 
 
 
 
 
 
 
 
 
2ccc4b3
c8c2927
 
3275882
c8c2927
 
 
1c10d3b
c8c2927
 
1c10d3b
c8c2927
1c10d3b
c8c2927
3275882
1c10d3b
c8c2927
3275882
 
 
 
 
34234e4
 
 
 
 
 
 
 
 
3275882
34234e4
3275882
34234e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3275882
 
 
 
 
 
 
 
 
 
1c10d3b
 
 
 
 
 
d4c6713
3275882
1bd58ac
 
34234e4
1c10d3b
 
 
3275882
1bd58ac
3275882
c8c2927
d4c6713
3275882
d4c6713
1bd58ac
3275882
3a66796
2ccc4b3
 
1c10d3b
 
 
c8c2927
3275882
c8c2927
 
 
1bd58ac
3275882
 
 
 
 
c8c2927
 
 
1c10d3b
 
 
 
c8c2927
 
3275882
 
 
 
 
 
c8c2927
3275882
 
 
1bd58ac
3275882
 
 
 
 
 
 
747009e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34234e4
 
 
 
747009e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34234e4
 
 
747009e
 
 
 
 
 
 
 
 
34234e4
747009e
 
 
34234e4
 
 
 
 
 
747009e
 
 
 
34234e4
 
 
 
 
 
 
747009e
 
 
 
 
34234e4
 
747009e
34234e4
747009e
 
 
 
 
 
 
 
 
 
34234e4
 
 
 
 
 
 
 
 
 
 
747009e
34234e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747009e
34234e4
 
 
 
 
 
 
 
 
 
 
 
747009e
34234e4
 
747009e
34234e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
747009e
 
 
 
 
 
 
 
 
 
 
ddb740c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
# =========================
# app.py  (production-ready, safer)
# =========================
import os

# Streamlit server tweaks (safe on HF Spaces / containers)
os.environ["STREAMLIT_SERVER_ENABLECORS"] = "false"
os.environ["STREAMLIT_SERVER_ENABLEWEBSOCKETCOMPRESSION"] = "false"

import streamlit as st
import numpy as np
import cv2
import tempfile
import traceback
from PIL import Image
import io

# -------------------------
# VERY EARLY: initialize session state
# -------------------------
# This prevents the "SessionInfo before it was initialized" glitch on some boots
for key, default in {
    "uploaded_image": None,
    "uploaded_video": None,
    "uploaded_target_image": None,
    "output_video": None,
    "output_image": None,
    "mode": "video",  # 'video' or 'image'
}.items():
    if key not in st.session_state:
        st.session_state[key] = default

# -------------------------
# GPU check (optional torch import)
# -------------------------
def _has_cuda():
    try:
        import torch
        return torch.cuda.is_available()
    except Exception:
        # If torch isn't installed, just say no CUDA
        return False

# -----------------------------------
# Page & Sidebar (controls for speed)
# -----------------------------------
st.set_page_config(page_title="Face Swapper", layout="centered")
st.title("🎭 Savvy Face Swapper")

# Mode selection
mode = st.radio("Select Mode:", ["Video", "Image"], horizontal=True)
st.session_state.mode = mode.lower()

st.sidebar.title("⚙️ Settings")

# Downscale to speed up detection & swapping
proc_res = st.sidebar.selectbox(
    "Processing Resolution",
    ["Original", "720p", "480p"],
    index=1,
    help="Frames are resized before detection/swap. Lower = faster."
)

# For video mode only
if st.session_state.mode == "video":
    # Skip frames to hit a lower effective FPS
    fps_cap = st.sidebar.selectbox(
        "Target FPS",
        ["Original", "24", "15"],
        index=0,
        help="Lower target FPS drops frames during processing for speed."
    )

    # Keep the original output resolution even if we process smaller
    keep_original_res = st.sidebar.checkbox(
        "Keep original output resolution",
        value=False,
        help="If enabled, processed frames are upscaled back to the input size."
    )

# Limit faces per frame (helps speed on crowded scenes)
max_faces = st.sidebar.slider(
    "Max faces per frame", min_value=1, max_value=8, value=4,
    help="At most this many faces will be swapped per frame."
)

# -------------------------
# Model loading (cached)
# -------------------------
@st.cache_resource(show_spinner=True)
def load_models():
    """
    Load InsightFace detectors and the inswapper model once.
    Auto-select GPU if available, else CPU.
    Be tolerant of insightface versions (providers kwarg may not exist).
    """
    import insightface
    from insightface.app import FaceAnalysis

    # Desired providers for ORT
    wants_cuda = _has_cuda()
    providers = ["CUDAExecutionProvider", "CPUExecutionProvider"] if wants_cuda else ["CPUExecutionProvider"]

    # Face detector/landmarks (retinaface + arcface in buffalo_l)
    ctx_id = 0 if wants_cuda else -1
    app = FaceAnalysis(name="buffalo_l")
    app.prepare(ctx_id=ctx_id, det_size=(640, 640))

    # Face swapper (inswapper_128)
    # Some insightface versions accept providers=..., some don't.
    swapper = None
    try:
        swapper = insightface.model_zoo.get_model(
            "inswapper_128.onnx",
            download=True,
            download_zip=False,
            providers=providers
        )
    except TypeError:
        # Fallback path: older insightface without providers kwarg
        swapper = insightface.model_zoo.get_model(
            "inswapper_128.onnx",
            download=True,
            download_zip=False
        )
    except Exception as e:
        # Last resort: surface a helpful error
        raise RuntimeError(f"Failed to load inswapper_128.onnx: {e}")

    return app, swapper, providers, ctx_id

# Initialize models
with st.spinner("Loading models…"):
    try:
        app, swapper, providers, ctx_id = load_models()
    except Exception as e:
        st.error("❌ Model loading failed. See logs for details.")
        st.error(str(e))
        st.stop()

st.caption(
    f"Device: {'GPU (CUDA)' if ctx_id == 0 else 'CPU'} • ORT Providers: {', '.join(providers)}"
)

# -------------------------
# Helpers
# -------------------------
def _target_size_for_height(width, height, target_h):
    if target_h <= 0 or height == 0:
        return width, height
    scale = target_h / float(height)
    new_w = max(1, int(round(width * scale)))
    new_h = max(1, int(round(height * scale)))
    return new_w, new_h

def _get_proc_size_choice(orig_w, orig_h, choice):
    if choice == "720p":
        return _target_size_for_height(orig_w, orig_h, 720)
    if choice == "480p":
        return _target_size_for_height(orig_w, orig_h, 480)
    return orig_w, orig_h

def _parse_fps_cap(original_fps, cap_choice):
    # Handle bad/zero FPS from container decoders
    if not original_fps or original_fps <= 0:
        original_fps = 25.0
    if cap_choice == "Original":
        return max(1.0, original_fps), 1  # write_fps, frame_step
    try:
        tgt = float(cap_choice)
        tgt = max(1.0, tgt)
        step = max(1, int(round(original_fps / tgt)))
        write_fps = max(1.0, original_fps / step)
        return write_fps, step
    except Exception:
        return max(1.0, original_fps), 1

def _safe_imdecode(file_bytes):
    arr = np.frombuffer(file_bytes, np.uint8)
    img = cv2.imdecode(arr, cv2.IMREAD_COLOR)
    return img

def _cv2_to_pil(image):
    """Convert OpenCV BGR image to PIL RGB image"""
    image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
    return Image.fromarray(image_rgb)

def _pil_to_cv2(image):
    """Convert PIL RGB image to OpenCV BGR image"""
    return cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)

# -------------------------------------
# Core: face swap functions
# -------------------------------------
def swap_faces_in_image(
    source_image_bgr: np.ndarray,
    target_image_bgr: np.ndarray,
    proc_res: str,
    max_faces: int
):
    # Validate source image
    try:
        source_faces = app.get(source_image_bgr)
    except Exception as e:
        st.error(f"❌ FaceAnalysis failed on source image: {e}")
        return None

    if not source_faces:
        st.error("❌ No face detected in the source image.")
        return None

    # Use the largest detected face
    source_face = max(
        source_faces,
        key=lambda f: max(1, int((f.bbox[2]-f.bbox[0]) * (f.bbox[3]-f.bbox[1])))
    )

    # Get processing size
    orig_h, orig_w = target_image_bgr.shape[:2]
    proc_w, proc_h = _get_proc_size_choice(orig_w, orig_h, proc_res)
    
    # Resize target image for processing
    if (proc_w, proc_h) != (orig_w, orig_h):
        target_image_proc = cv2.resize(target_image_bgr, (proc_w, proc_h), interpolation=cv2.INTER_AREA)
    else:
        target_image_proc = target_image_bgr.copy()

    try:
        # Detect faces on target image
        try:
            target_faces = app.get(target_image_proc)
        except Exception as det_e:
            st.error(f"[ERROR] Detection failed on target image: {det_e}")
            target_faces = []

        if not target_faces:
            st.warning("⚠️ No faces detected in the target image.")
            return _cv2_to_pil(target_image_bgr)

        # Optionally limit faces to largest N
        target_faces = sorted(
            target_faces,
            key=lambda f: (f.bbox[2]-f.bbox[0])*(f.bbox[3]-f.bbox[1]),
            reverse=True
        )[:max_faces]

        # Swap faces
        result_image = target_image_proc.copy()
        for tface in target_faces:
            try:
                result_image = swapper.get(result_image, tface, source_face, paste_back=True)
            except Exception as swap_e:
                st.error(f"Face swap error: {swap_e}")
                continue

        # Resize back to original if needed
        if (proc_w, proc_h) != (orig_w, orig_h):
            result_image = cv2.resize(result_image, (orig_w, orig_h), interpolation=cv2.INTER_CUBIC)

        return _cv2_to_pil(result_image)

    except Exception as e:
        st.error(f"❌ Error processing image: {e}")
        traceback.print_exc()
        return _cv2_to_pil(target_image_bgr)

def swap_faces_in_video(
    image_bgr: np.ndarray,
    video_path: str,
    proc_res: str,
    fps_cap: str,
    keep_original_res: bool,
    max_faces: int,
    progress
):
    # Validate source image
    try:
        source_faces = app.get(image_bgr)
    except Exception as e:
        st.error(f"❌ FaceAnalysis failed on source image: {e}")
        return None

    if not source_faces:
        st.error("❌ No face detected in the source image.")
        return None

    # Use the largest detected face
    source_face = max(
        source_faces,
        key=lambda f: max(1, int((f.bbox[2]-f.bbox[0]) * (f.bbox[3]-f.bbox[1])))
    )

    # Open video
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        st.error("❌ Could not open the uploaded video. Try re-encoding to MP4/H.264.")
        return None

    # Read properties
    frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    orig_w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    orig_h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    orig_fps = float(cap.get(cv2.CAP_PROP_FPS))
    if orig_fps <= 0 or np.isnan(orig_fps):
        orig_fps = 25.0

    # Decide processing size & FPS behavior
    proc_w, proc_h = _get_proc_size_choice(orig_w, orig_h, proc_res)
    write_fps, frame_step = _parse_fps_cap(orig_fps, fps_cap)
    out_w, out_h = (orig_w, orig_h) if keep_original_res else (proc_w, proc_h)

    # Prepare output writer
    with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_out:
        output_path = tmp_out.name

    fourcc = cv2.VideoWriter_fourcc(*"mp4v")
    out = cv2.VideoWriter(output_path, fourcc, write_fps, (out_w, out_h))
    if not out.isOpened():
        cap.release()
        st.error(
            "❌ Failed to open VideoWriter. "
            "Try setting Processing Resolution to 480p or Target FPS to 24."
        )
        return None

    st.info(
        f"Input: {orig_w}×{orig_h} @ {orig_fps:.2f} fps | "
        f"Processing: {proc_w}×{proc_h} | Writing: {out_w}×{out_h} @ {write_fps:.2f} fps | "
        f"Frame step: {frame_step} (1 = process every frame) | "
        f"Max faces/frame: {max_faces}"
    )

    # Process loop
    read_idx = 0
    processed_frames = 0

    try:
        while True:
            ret, frame = cap.read()
            if not ret:
                break

            # FPS cap by skipping frames
            if frame_step > 1 and (read_idx % frame_step != 0):
                read_idx += 1
                if frame_count > 0:
                    progress.progress(min(1.0, read_idx / frame_count))
                continue

            # Resize for processing
            if (proc_w, proc_h) != (orig_w, orig_h):
                proc_frame = cv2.resize(frame, (proc_w, proc_h), interpolation=cv2.INTER_AREA)
            else:
                proc_frame = frame

            try:
                # Detect faces on processed frame
                try:
                    target_faces = app.get(proc_frame)
                except Exception as det_e:
                    print(f"[WARN] Detection failed on frame {read_idx}: {det_e}")
                    target_faces = []

                if target_faces:
                    # Optionally limit faces to largest N for speed
                    target_faces = sorted(
                        target_faces,
                        key=lambda f: (f.bbox[2]-f.bbox[0])*(f.bbox[3]-f.bbox[1]),
                        reverse=True
                    )[:max_faces]

                # Swap into a working buffer
                result_frame = proc_frame.copy()
                for tface in target_faces:
                    try:
                        result_frame = swapper.get(result_frame, tface, source_face, paste_back=True)
                    except Exception as swap_e:
                        print(f"[WARN] Face swap failed on frame {read_idx}: {swap_e}")
                        continue

                # Upscale back to original if requested
                if keep_original_res and (proc_w, proc_h) != (orig_w, orig_h):
                    result_frame = cv2.resize(result_frame, (orig_w, orig_h), interpolation=cv2.INTER_CUBIC)

                out.write(result_frame)

            except Exception as e:
                # Log & write fallback frame (processed size or original size)
                print(f"[WARN] Frame {read_idx} failed: {e}")
                traceback.print_exc()
                fallback = proc_frame
                if keep_original_res and (proc_w, proc_h) != (orig_w, orig_h):
                    fallback = cv2.resize(proc_frame, (orig_w, orig_h), interpolation=cv2.INTER_CUBIC)
                out.write(fallback)

            read_idx += 1
            processed_frames += 1

            # Update progress
            if frame_count > 0:
                progress.progress(min(1.0, read_idx / frame_count))
            elif processed_frames % 30 == 0:
                # Fallback progress for unknown frame counts
                progress.progress(min(1.0, (processed_frames % 300) / 300.0))

    except Exception as e:
        st.error(f"❌ Error during video processing: {e}")
        traceback.print_exc()
    finally:
        cap.release()
        out.release()

    return output_path

# -------------------------
# UI: Uploads & Preview
# -------------------------
st.write("Upload a **source face image** and a **target**, preview them, tweak options, then start swapping.")

image_file = st.file_uploader("Upload Source Image", type=["jpg", "jpeg", "png"])

if st.session_state.mode == "video":
    target_file = st.file_uploader("Upload Target Video", type=["mp4", "mov", "mkv", "avi"])
else:
    target_file = st.file_uploader("Upload Target Image", type=["jpg", "jpeg", "png"])

# Previews
if image_file:
    st.subheader("📷 Source Image Preview")
    st.image(image_file, caption="Source Image", use_column_width=True)

if target_file:
    if st.session_state.mode == "video":
        st.subheader("🎬 Target Video Preview")
        st.video(target_file)
    else:
        st.subheader("🖼️ Target Image Preview")
        st.image(target_file, caption="Target Image", use_column_width=True)

# -------------------------
# Run button
# -------------------------
if st.button("🚀 Start Face Swap"):
    if not image_file or not target_file:
        st.error("⚠️ Please upload both a source image and a target.")
    else:
        # Read source image
        try:
            image_bytes = image_file.getvalue()
            source_image = _safe_imdecode(image_bytes)
            if source_image is None:
                st.error("❌ Failed to decode source image. Please use a valid JPG/PNG.")
                st.stop()
        except Exception as e:
            st.error(f"❌ Failed to read the source image bytes: {e}")
            st.stop()

        if st.session_state.mode == "video":
            # Process video
            try:
                # Persist temp video for OpenCV
                video_bytes = target_file.getvalue()
                with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp_video:
                    tmp_video.write(video_bytes)
                    tmp_video_path = tmp_video.name
            except Exception as e:
                st.error(f"❌ Failed to save the uploaded video to a temp file: {e}")
                st.stop()

            with st.spinner("Processing video… This can take a while ⏳"):
                progress_bar = st.progress(0)
                output_path = swap_faces_in_video(
                    source_image,
                    tmp_video_path,
                    proc_res=proc_res,
                    fps_cap=fps_cap,
                    keep_original_res=keep_original_res,
                    max_faces=max_faces,
                    progress=progress_bar
                )

            if output_path:
                st.success("✅ Face swapping completed!")
                st.subheader("📺 Output Video Preview")
                st.video(output_path)

                # Download button
                try:
                    with open(output_path, "rb") as f:
                        st.download_button(
                            label="⬇️ Download Processed Video",
                            data=f,
                            file_name="output_swapped_video.mp4",
                            mime="video/mp4"
                        )
                except Exception as e:
                    st.warning(f"⚠️ Could not open the output file for download: {e}")

            # Cleanup temp input video
            try:
                os.remove(tmp_video_path)
            except Exception:
                pass

        else:
            # Process image
            try:
                target_bytes = target_file.getvalue()
                target_image = _safe_imdecode(target_bytes)
                if target_image is None:
                    st.error("❌ Failed to decode target image. Please use a valid JPG/PNG.")
                    st.stop()
            except Exception as e:
                st.error(f"❌ Failed to read the target image bytes: {e}")
                st.stop()

            with st.spinner("Processing image…"):
                result_image = swap_faces_in_image(
                    source_image,
                    target_image,
                    proc_res=proc_res,
                    max_faces=max_faces
                )

            if result_image:
                st.success("✅ Face swapping completed!")
                st.subheader("🖼️ Output Image Preview")
                st.image(result_image, caption="Result Image", use_column_width=True)

                # Download button
                buf = io.BytesIO()
                result_image.save(buf, format="JPEG")
                byte_im = buf.getvalue()
                
                st.download_button(
                    label="⬇️ Download Processed Image",
                    data=byte_im,
                    file_name="output_swapped_image.jpg",
                    mime="image/jpeg"
                )

# -------------
# Diagnostics
# -------------
with st.expander("🩺 Diagnostics"):
    st.write(
        "- If you see **SessionInfo** errors: this app initializes `st.session_state` early and defers heavy loads via "
        "`@st.cache_resource`. If errors persist, restart the Space/Runtime.\n"
        "- If output is jumpy/stutters: lower **Target FPS** or choose **480p** processing.\n"
        "- If video fails to open: re-encode your input to **MP4 (H.264, AAC)**.\n"
        "- If VideoWriter fails: try **480p** and **Target FPS 24**."
    )