File size: 15,651 Bytes
5fc4576 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
import gradio as gr
# Sample data for demonstration
perception_papers = [
{
"title": "CoSDH: Communication-Efficient Collaborative Perception",
"venue": "CVPR 2025",
"description": "Novel approach for efficient collaborative perception using supply-demand awareness.",
"link": "https://arxiv.org/abs/2503.03430"
},
{
"title": "V2X-R: Cooperative LiDAR-4D Radar Fusion",
"venue": "CVPR 2025",
"description": "Cooperative fusion of LiDAR and 4D radar sensors for enhanced 3D object detection.",
"link": "https://arxiv.org/abs/2411.08402"
},
{
"title": "Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps",
"venue": "NeurIPS 2022",
"description": "Groundbreaking work on efficient collaborative perception using spatial confidence maps.",
"link": "https://openreview.net/forum?id=dLL4KXzKUpS"
},
{
"title": "STAMP: Scalable Task-Agnostic Collaborative Perception",
"venue": "ICLR 2025",
"description": "Framework for scalable collaborative perception that is both task and model agnostic.",
"link": "https://openreview.net/forum?id=8NdNniulYE"
},
{
"title": "CoBEVFlow: Robust Asynchronous Collaborative 3D Detection",
"venue": "NeurIPS 2023",
"description": "Handles temporal asynchrony in collaborative perception using bird's eye view flow.",
"link": "https://openreview.net/forum?id=UHIDdtxmVS"
}
]
datasets_data = [
["DAIR-V2X", "2022", "Real-world", "V2I", "71K frames", "3D boxes, Infrastructure"],
["V2V4Real", "2023", "Real-world", "V2V", "20K frames", "Real V2V, Highway"],
["TUMTraf-V2X", "2024", "Real-world", "V2X", "2K sequences", "Dense labels, Urban"],
["OPV2V", "2022", "Simulation", "V2V", "Large-scale", "CARLA, Multi-agent"],
["V2X-Sim", "2021", "Simulation", "Multi", "Scalable", "Multi-agent, Collaborative"],
["DOLPHINS", "2024", "Simulation", "UAV", "UAV swarms", "AirSim, Multi-UAV"]
]
def create_paper_card(paper):
return f"""
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; margin: 10px 0; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<div style="background: #667eea; color: white; padding: 5px 10px; border-radius: 15px; display: inline-block; font-size: 0.8em; margin-bottom: 10px;">
{paper['venue']}
</div>
<h3 style="color: #333; margin: 10px 0;">{paper['title']}</h3>
<p style="color: #666; line-height: 1.5; margin-bottom: 15px;">{paper['description']}</p>
<a href="{paper['link']}" target="_blank" style="background: #667eea; color: white; padding: 8px 15px; border-radius: 5px; text-decoration: none; font-size: 0.9em;">
๐ Read Paper
</a>
</div>
"""
# Custom CSS
custom_css = """
.gradio-container {
max-width: 1200px !important;
}
.main-header {
text-align: center;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
padding: 40px 20px;
border-radius: 15px;
margin-bottom: 30px;
}
"""
# Create the interface
with gr.Blocks(
title="๐ค Awesome Multi-Agent Collaborative Perception",
theme=gr.themes.Soft(),
css=custom_css
) as demo:
# Header
gr.HTML("""
<div class="main-header">
<h1 style="font-size: 2.5rem; margin-bottom: 10px;">๐ค Awesome Multi-Agent Collaborative Perception</h1>
<p style="font-size: 1.2rem; opacity: 0.9;">Explore cutting-edge resources for Multi-Agent Collaborative Perception, Prediction, and Planning</p>
<div style="display: flex; justify-content: center; gap: 30px; margin-top: 20px; flex-wrap: wrap;">
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">200+</div>
<div>Papers</div>
</div>
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">25+</div>
<div>Datasets</div>
</div>
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">50+</div>
<div>Code Repos</div>
</div>
<div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
<div style="font-size: 1.5rem; font-weight: bold;">2025</div>
<div>Updated</div>
</div>
</div>
</div>
""")
# Main navigation tabs
with gr.Tabs():
with gr.Tab("๐ Perception"):
gr.Markdown("## Multi-Agent Collaborative Perception Papers")
gr.Markdown("*Latest research in collaborative sensing, 3D object detection, and V2X communication*")
# Create paper cards
papers_html = "".join([create_paper_card(paper) for paper in perception_papers])
gr.HTML(papers_html)
gr.Markdown("""
### ๐ Key Communication Strategies:
- **Early Fusion**: Raw sensor data sharing
- **Late Fusion**: Detection-level information exchange
- **Intermediate Fusion**: Feature-level collaboration
- **Selective Communication**: Confidence-based data sharing
""")
with gr.Tab("๐ Datasets"):
gr.Markdown("## Datasets & Benchmarks")
gr.Markdown("*Comprehensive collection of real-world and simulation datasets*")
gr.Dataframe(
value=datasets_data,
headers=["Dataset", "Year", "Type", "Agents", "Size", "Features"],
datatype=["str", "str", "str", "str", "str", "str"],
interactive=False
)
gr.Markdown("""
### ๐ Notable Features:
- **DAIR-V2X**: First real-world V2I collaborative perception dataset with infrastructure sensors
- **V2V4Real**: Real vehicle-to-vehicle communication dataset collected on highways
- **TUMTraf-V2X**: Dense annotations for urban collaborative perception scenarios
- **OPV2V**: Large-scale simulation benchmark built on CARLA platform
- **V2X-Sim**: Comprehensive multi-agent simulation with customizable scenarios
""")
with gr.Tab("๐ Tracking"):
gr.Markdown("## Multi-Object Tracking & State Estimation")
gr.Markdown("*Collaborative tracking across distributed agents with uncertainty quantification*")
gr.HTML("""
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #4ECDC4;">MOT-CUP</h3>
<p>Multi-Object Tracking with Conformal Uncertainty Propagation</p>
<a href="https://arxiv.org/abs/2303.14346" target="_blank" style="color: #667eea;">๐ Paper</a>
</div>
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #4ECDC4;">DMSTrack</h3>
<p>Probabilistic 3D Multi-Object Cooperative Tracking (ICRA 2024)</p>
<a href="https://arxiv.org/abs/2309.14655" target="_blank" style="color: #667eea;">๐ Paper</a>
</div>
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #4ECDC4;">CoDynTrust</h3>
<p>Dynamic Feature Trust for Robust Asynchronous Collaborative Perception (ICRA 2025)</p>
<a href="https://arxiv.org/abs/2502.08169" target="_blank" style="color: #667eea;">๐ Paper</a>
</div>
</div>
""")
gr.Markdown("""
### ๐ฏ Key Challenges:
- **Temporal Asynchrony**: Handling different sensor timestamps and communication delays
- **Uncertainty Quantification**: Reliable confidence estimation across multiple agents
- **Data Association**: Multi-agent correspondence and track management
- **Scalability**: Maintaining performance with increasing number of agents
""")
with gr.Tab("๐ฎ Prediction"):
gr.Markdown("## Trajectory Forecasting & Motion Prediction")
gr.Markdown("*Cooperative prediction for autonomous systems and multi-agent coordination*")
gr.HTML("""
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #45B7D1;">V2X-Graph</h3>
<p>Learning Cooperative Trajectory Representations (NeurIPS 2024)</p>
<a href="https://arxiv.org/abs/2311.00371" target="_blank" style="color: #667eea;">๐ Paper</a>
</div>
<div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
<h3 style="color: #45B7D1;">Co-MTP</h3>
<p>Cooperative Multi-Temporal Prediction Framework (ICRA 2025)</p>
<a href="https://arxiv.org/abs/2502.16589" target="_blank" style="color: #667eea;">๐ Paper</a>
</div>
</div>
""")
gr.HTML("""
<div style="background: #f8f9fa; border-radius: 10px; padding: 20px; margin: 20px 0;">
<h3>๐ง Key Approaches:</h3>
<ul style="line-height: 1.8;">
<li><strong>Graph Neural Networks</strong>: Modeling agent interactions and social behaviors</li>
<li><strong>Transformer Architectures</strong>: Attention-based prediction with long-range dependencies</li>
<li><strong>Multi-Modal Fusion</strong>: Combining LiDAR, camera, and communication data</li>
<li><strong>Uncertainty Quantification</strong>: Reliable confidence estimation for safety-critical applications</li>
</ul>
</div>
""")
with gr.Tab("โ๏ธ Methods"):
gr.Markdown("## Methods & Techniques")
gr.Markdown("*Core methodologies for communication, robustness, and learning in collaborative systems*")
with gr.Row():
with gr.Column():
gr.Markdown("""
### ๐ก Communication Strategies
- **Bandwidth Optimization**: Compression and selective sharing
- **Protocol Design**: V2V, V2I, V2X communication standards
- **Network Topology**: Centralized vs. distributed architectures
- **Quality of Service**: Latency and reliability management
""")
with gr.Column():
gr.Markdown("""
### ๐ก๏ธ Robustness Approaches
- **Byzantine Fault Tolerance**: Handling adversarial agents
- **Uncertainty Handling**: Robust fusion under noise
- **Privacy Preservation**: Secure multi-party computation
- **Malicious Agent Detection**: CP-Guard framework (AAAI 2025)
""")
gr.HTML("""
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; padding: 20px; margin: 20px 0;">
<h3>๐ง Learning Paradigms</h3>
<div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px; margin-top: 15px;">
<div>โข <strong>Federated Learning</strong>: Distributed model training</div>
<div>โข <strong>Transfer Learning</strong>: Cross-domain adaptation</div>
<div>โข <strong>Meta-Learning</strong>: Quick adaptation to new scenarios</div>
<div>โข <strong>Heterogeneous Learning</strong>: HEAL framework (ICLR 2024)</div>
</div>
</div>
""")
with gr.Tab("๐๏ธ Conferences"):
gr.Markdown("## Top Venues & Publication Trends")
gr.Markdown("*Premier conferences and emerging research directions in collaborative perception*")
conference_data = [
["CVPR 2025", "5+", "End-to-end systems, robustness"],
["ICLR 2025", "3+", "Learning representations, scalability"],
["AAAI 2025", "4+", "AI applications, defense mechanisms"],
["ICRA 2025", "6+", "Robotics applications, real-world deployment"],
["NeurIPS 2024", "2+", "Theoretical foundations, novel architectures"]
]
gr.Dataframe(
value=conference_data,
headers=["Conference", "Papers", "Focus Areas"],
datatype=["str", "str", "str"],
interactive=False
)
gr.Markdown("""
### ๐ Research Trends (2024-2025):
- **Communication Efficiency**: 40% increase in bandwidth-aware methods
- **Robustness & Security**: Emerging focus on adversarial robustness (15+ papers)
- **Real-World Deployment**: Growing emphasis on practical systems and field tests
- **Heterogeneous Systems**: Multi-modal and multi-agent diversity becoming standard
- **End-to-End Learning**: Integration of perception, prediction, and planning
""")
# Footer
gr.HTML("""
<div style="text-align: center; margin-top: 40px; padding: 30px; background: #f8f9fa; border-radius: 10px;">
<h3>๐ค Contributing</h3>
<p>We welcome contributions! Please submit papers, datasets, and code repositories via GitHub.</p>
<div style="margin-top: 20px;">
<a href="https://github.com/your-username/awesome-multi-agent-collaborative-perception" target="_blank"
style="background: #667eea; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
๐ GitHub Repository
</a>
<a href="https://huggingface.co/spaces/your-username/awesome-multi-agent-collaborative-perception" target="_blank"
style="background: #ff6b6b; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
๐ค Hugging Face Space
</a>
</div>
<p style="margin-top: 20px; color: #666;">Made with โค๏ธ for the Collaborative Perception Community</p>
</div>
""")
if __name__ == "__main__":
demo.launch() |