File size: 15,651 Bytes
5fc4576
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr

# Sample data for demonstration
perception_papers = [
    {
        "title": "CoSDH: Communication-Efficient Collaborative Perception",
        "venue": "CVPR 2025",
        "description": "Novel approach for efficient collaborative perception using supply-demand awareness.",
        "link": "https://arxiv.org/abs/2503.03430"
    },
    {
        "title": "V2X-R: Cooperative LiDAR-4D Radar Fusion",
        "venue": "CVPR 2025", 
        "description": "Cooperative fusion of LiDAR and 4D radar sensors for enhanced 3D object detection.",
        "link": "https://arxiv.org/abs/2411.08402"
    },
    {
        "title": "Where2comm: Efficient Collaborative Perception via Spatial Confidence Maps",
        "venue": "NeurIPS 2022",
        "description": "Groundbreaking work on efficient collaborative perception using spatial confidence maps.",
        "link": "https://openreview.net/forum?id=dLL4KXzKUpS"
    },
    {
        "title": "STAMP: Scalable Task-Agnostic Collaborative Perception",
        "venue": "ICLR 2025",
        "description": "Framework for scalable collaborative perception that is both task and model agnostic.",
        "link": "https://openreview.net/forum?id=8NdNniulYE"
    },
    {
        "title": "CoBEVFlow: Robust Asynchronous Collaborative 3D Detection",
        "venue": "NeurIPS 2023",
        "description": "Handles temporal asynchrony in collaborative perception using bird's eye view flow.",
        "link": "https://openreview.net/forum?id=UHIDdtxmVS"
    }
]

datasets_data = [
    ["DAIR-V2X", "2022", "Real-world", "V2I", "71K frames", "3D boxes, Infrastructure"],
    ["V2V4Real", "2023", "Real-world", "V2V", "20K frames", "Real V2V, Highway"],
    ["TUMTraf-V2X", "2024", "Real-world", "V2X", "2K sequences", "Dense labels, Urban"],
    ["OPV2V", "2022", "Simulation", "V2V", "Large-scale", "CARLA, Multi-agent"],
    ["V2X-Sim", "2021", "Simulation", "Multi", "Scalable", "Multi-agent, Collaborative"],
    ["DOLPHINS", "2024", "Simulation", "UAV", "UAV swarms", "AirSim, Multi-UAV"]
]

def create_paper_card(paper):
    return f"""
    <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; margin: 10px 0; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
        <div style="background: #667eea; color: white; padding: 5px 10px; border-radius: 15px; display: inline-block; font-size: 0.8em; margin-bottom: 10px;">
            {paper['venue']}
        </div>
        <h3 style="color: #333; margin: 10px 0;">{paper['title']}</h3>
        <p style="color: #666; line-height: 1.5; margin-bottom: 15px;">{paper['description']}</p>
        <a href="{paper['link']}" target="_blank" style="background: #667eea; color: white; padding: 8px 15px; border-radius: 5px; text-decoration: none; font-size: 0.9em;">
            ๐Ÿ“„ Read Paper
        </a>
    </div>
    """

# Custom CSS
custom_css = """
.gradio-container {
    max-width: 1200px !important;
}
.main-header {
    text-align: center;
    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    color: white;
    padding: 40px 20px;
    border-radius: 15px;
    margin-bottom: 30px;
}
"""

# Create the interface
with gr.Blocks(
    title="๐Ÿค– Awesome Multi-Agent Collaborative Perception",
    theme=gr.themes.Soft(),
    css=custom_css
) as demo:
    
    # Header
    gr.HTML("""
    <div class="main-header">
        <h1 style="font-size: 2.5rem; margin-bottom: 10px;">๐Ÿค– Awesome Multi-Agent Collaborative Perception</h1>
        <p style="font-size: 1.2rem; opacity: 0.9;">Explore cutting-edge resources for Multi-Agent Collaborative Perception, Prediction, and Planning</p>
        <div style="display: flex; justify-content: center; gap: 30px; margin-top: 20px; flex-wrap: wrap;">
            <div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
                <div style="font-size: 1.5rem; font-weight: bold;">200+</div>
                <div>Papers</div>
            </div>
            <div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
                <div style="font-size: 1.5rem; font-weight: bold;">25+</div>
                <div>Datasets</div>
            </div>
            <div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
                <div style="font-size: 1.5rem; font-weight: bold;">50+</div>
                <div>Code Repos</div>
            </div>
            <div style="background: rgba(255,255,255,0.2); padding: 10px 20px; border-radius: 25px;">
                <div style="font-size: 1.5rem; font-weight: bold;">2025</div>
                <div>Updated</div>
            </div>
        </div>
    </div>
    """)
    
    # Main navigation tabs
    with gr.Tabs():
        
        with gr.Tab("๐Ÿ” Perception"):
            gr.Markdown("## Multi-Agent Collaborative Perception Papers")
            gr.Markdown("*Latest research in collaborative sensing, 3D object detection, and V2X communication*")
            
            # Create paper cards
            papers_html = "".join([create_paper_card(paper) for paper in perception_papers])
            gr.HTML(papers_html)
            
            gr.Markdown("""
            ### ๐Ÿ”„ Key Communication Strategies:
            - **Early Fusion**: Raw sensor data sharing
            - **Late Fusion**: Detection-level information exchange  
            - **Intermediate Fusion**: Feature-level collaboration
            - **Selective Communication**: Confidence-based data sharing
            """)
            
        with gr.Tab("๐Ÿ“Š Datasets"):
            gr.Markdown("## Datasets & Benchmarks")
            gr.Markdown("*Comprehensive collection of real-world and simulation datasets*")
            
            gr.Dataframe(
                value=datasets_data,
                headers=["Dataset", "Year", "Type", "Agents", "Size", "Features"],
                datatype=["str", "str", "str", "str", "str", "str"],
                interactive=False
            )
            
            gr.Markdown("""
            ### ๐ŸŒŸ Notable Features:
            - **DAIR-V2X**: First real-world V2I collaborative perception dataset with infrastructure sensors
            - **V2V4Real**: Real vehicle-to-vehicle communication dataset collected on highways
            - **TUMTraf-V2X**: Dense annotations for urban collaborative perception scenarios
            - **OPV2V**: Large-scale simulation benchmark built on CARLA platform
            - **V2X-Sim**: Comprehensive multi-agent simulation with customizable scenarios
            """)
            
        with gr.Tab("๐Ÿ“ Tracking"):
            gr.Markdown("## Multi-Object Tracking & State Estimation")
            gr.Markdown("*Collaborative tracking across distributed agents with uncertainty quantification*")
            
            gr.HTML("""
            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
                <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
                    <h3 style="color: #4ECDC4;">MOT-CUP</h3>
                    <p>Multi-Object Tracking with Conformal Uncertainty Propagation</p>
                    <a href="https://arxiv.org/abs/2303.14346" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
                </div>
                <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
                    <h3 style="color: #4ECDC4;">DMSTrack</h3>
                    <p>Probabilistic 3D Multi-Object Cooperative Tracking (ICRA 2024)</p>
                    <a href="https://arxiv.org/abs/2309.14655" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
                </div>
                <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
                    <h3 style="color: #4ECDC4;">CoDynTrust</h3>
                    <p>Dynamic Feature Trust for Robust Asynchronous Collaborative Perception (ICRA 2025)</p>
                    <a href="https://arxiv.org/abs/2502.08169" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
                </div>
            </div>
            """)
            
            gr.Markdown("""
            ### ๐ŸŽฏ Key Challenges:
            - **Temporal Asynchrony**: Handling different sensor timestamps and communication delays
            - **Uncertainty Quantification**: Reliable confidence estimation across multiple agents
            - **Data Association**: Multi-agent correspondence and track management
            - **Scalability**: Maintaining performance with increasing number of agents
            """)
            
        with gr.Tab("๐Ÿ”ฎ Prediction"):
            gr.Markdown("## Trajectory Forecasting & Motion Prediction")
            gr.Markdown("*Cooperative prediction for autonomous systems and multi-agent coordination*")
            
            gr.HTML("""
            <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(300px, 1fr)); gap: 20px; margin: 20px 0;">
                <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
                    <h3 style="color: #45B7D1;">V2X-Graph</h3>
                    <p>Learning Cooperative Trajectory Representations (NeurIPS 2024)</p>
                    <a href="https://arxiv.org/abs/2311.00371" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
                </div>
                <div style="border: 1px solid #ddd; border-radius: 10px; padding: 20px; background: white; box-shadow: 0 2px 5px rgba(0,0,0,0.1);">
                    <h3 style="color: #45B7D1;">Co-MTP</h3>
                    <p>Cooperative Multi-Temporal Prediction Framework (ICRA 2025)</p>
                    <a href="https://arxiv.org/abs/2502.16589" target="_blank" style="color: #667eea;">๐Ÿ“„ Paper</a>
                </div>
            </div>
            """)
            
            gr.HTML("""
            <div style="background: #f8f9fa; border-radius: 10px; padding: 20px; margin: 20px 0;">
                <h3>๐Ÿง  Key Approaches:</h3>
                <ul style="line-height: 1.8;">
                    <li><strong>Graph Neural Networks</strong>: Modeling agent interactions and social behaviors</li>
                    <li><strong>Transformer Architectures</strong>: Attention-based prediction with long-range dependencies</li>
                    <li><strong>Multi-Modal Fusion</strong>: Combining LiDAR, camera, and communication data</li>
                    <li><strong>Uncertainty Quantification</strong>: Reliable confidence estimation for safety-critical applications</li>
                </ul>
            </div>
            """)
            
        with gr.Tab("โš™๏ธ Methods"):
            gr.Markdown("## Methods & Techniques")
            gr.Markdown("*Core methodologies for communication, robustness, and learning in collaborative systems*")
            
            with gr.Row():
                with gr.Column():
                    gr.Markdown("""
                    ### ๐Ÿ“ก Communication Strategies
                    - **Bandwidth Optimization**: Compression and selective sharing
                    - **Protocol Design**: V2V, V2I, V2X communication standards
                    - **Network Topology**: Centralized vs. distributed architectures
                    - **Quality of Service**: Latency and reliability management
                    """)
                
                with gr.Column():
                    gr.Markdown("""
                    ### ๐Ÿ›ก๏ธ Robustness Approaches
                    - **Byzantine Fault Tolerance**: Handling adversarial agents
                    - **Uncertainty Handling**: Robust fusion under noise
                    - **Privacy Preservation**: Secure multi-party computation
                    - **Malicious Agent Detection**: CP-Guard framework (AAAI 2025)
                    """)
            
            gr.HTML("""
            <div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; border-radius: 10px; padding: 20px; margin: 20px 0;">
                <h3>๐Ÿง  Learning Paradigms</h3>
                <div style="display: grid; grid-template-columns: repeat(auto-fit, minmax(250px, 1fr)); gap: 15px; margin-top: 15px;">
                    <div>โ€ข <strong>Federated Learning</strong>: Distributed model training</div>
                    <div>โ€ข <strong>Transfer Learning</strong>: Cross-domain adaptation</div>
                    <div>โ€ข <strong>Meta-Learning</strong>: Quick adaptation to new scenarios</div>
                    <div>โ€ข <strong>Heterogeneous Learning</strong>: HEAL framework (ICLR 2024)</div>
                </div>
            </div>
            """)
            
        with gr.Tab("๐Ÿ›๏ธ Conferences"):
            gr.Markdown("## Top Venues & Publication Trends")
            gr.Markdown("*Premier conferences and emerging research directions in collaborative perception*")
            
            conference_data = [
                ["CVPR 2025", "5+", "End-to-end systems, robustness"],
                ["ICLR 2025", "3+", "Learning representations, scalability"], 
                ["AAAI 2025", "4+", "AI applications, defense mechanisms"],
                ["ICRA 2025", "6+", "Robotics applications, real-world deployment"],
                ["NeurIPS 2024", "2+", "Theoretical foundations, novel architectures"]
            ]
            
            gr.Dataframe(
                value=conference_data,
                headers=["Conference", "Papers", "Focus Areas"],
                datatype=["str", "str", "str"],
                interactive=False
            )
            
            gr.Markdown("""
            ### ๐Ÿ“Š Research Trends (2024-2025):
            - **Communication Efficiency**: 40% increase in bandwidth-aware methods
            - **Robustness & Security**: Emerging focus on adversarial robustness (15+ papers)
            - **Real-World Deployment**: Growing emphasis on practical systems and field tests
            - **Heterogeneous Systems**: Multi-modal and multi-agent diversity becoming standard
            - **End-to-End Learning**: Integration of perception, prediction, and planning
            """)
    
    # Footer
    gr.HTML("""
    <div style="text-align: center; margin-top: 40px; padding: 30px; background: #f8f9fa; border-radius: 10px;">
        <h3>๐Ÿค Contributing</h3>
        <p>We welcome contributions! Please submit papers, datasets, and code repositories via GitHub.</p>
        <div style="margin-top: 20px;">
            <a href="https://github.com/your-username/awesome-multi-agent-collaborative-perception" target="_blank" 
               style="background: #667eea; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
                ๐Ÿ“š GitHub Repository
            </a>
            <a href="https://huggingface.co/spaces/your-username/awesome-multi-agent-collaborative-perception" target="_blank"
               style="background: #ff6b6b; color: white; padding: 10px 20px; border-radius: 5px; text-decoration: none; margin: 5px;">
                ๐Ÿค— Hugging Face Space
            </a>
        </div>
        <p style="margin-top: 20px; color: #666;">Made with โค๏ธ for the Collaborative Perception Community</p>
    </div>
    """)

if __name__ == "__main__":
    demo.launch()