_base_ = [ | |
'../_base_/models/faster-rcnn_r50_fpn.py', | |
'../_base_/datasets/cityscapes_detection.py', | |
'../_base_/default_runtime.py', '../_base_/schedules/schedule_1x.py' | |
] | |
model = dict( | |
backbone=dict(init_cfg=None), | |
roi_head=dict( | |
bbox_head=dict( | |
num_classes=8, | |
loss_bbox=dict(type='SmoothL1Loss', beta=1.0, loss_weight=1.0)))) | |
# optimizer | |
# lr is set for a batch size of 8 | |
optim_wrapper = dict(optimizer=dict(lr=0.01)) | |
# learning rate | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), | |
dict( | |
type='MultiStepLR', | |
begin=0, | |
end=8, | |
by_epoch=True, | |
# [7] yields higher performance than [6] | |
milestones=[7], | |
gamma=0.1) | |
] | |
# actual epoch = 8 * 8 = 64 | |
train_cfg = dict(max_epochs=8) | |
# For better, more stable performance initialize from COCO | |
load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth' # noqa | |
# NOTE: `auto_scale_lr` is for automatically scaling LR, | |
# USER SHOULD NOT CHANGE ITS VALUES. | |
# base_batch_size = (8 GPUs) x (1 samples per GPU) | |
# TODO: support auto scaling lr | |
# auto_scale_lr = dict(base_batch_size=8) | |