Spaces:
Sleeping
Sleeping
| from tensorflow.keras.models import load_model | |
| import streamlit as st | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| # Load the ensemble model using tf.keras.models.load_model() | |
| loaded_ensemble_model = load_model('ensemble_model.h5') | |
| st.markdown('<h1 style="color:red;">Ensemble Image classification model for Alzheimer</h1>', unsafe_allow_html=True) | |
| st.markdown('<h2 style="color:gray;">The image classification model classifies brain scan image into following categories:</h2>', unsafe_allow_html=True) | |
| st.markdown('<h3 style="color:gray;"> Moderate,Mild,Very Mild, NonDemented</h3>', unsafe_allow_html=True) | |
| upload= st.file_uploader('Insert image for classification', type=['png','jpg']) | |
| c1, c2= st.columns(2) | |
| if upload is not None: | |
| im= Image.open(upload) | |
| im = im.convert('RGB') | |
| img= np.asarray(im) | |
| image= cv2.resize(img,(150, 150)) | |
| img_array = image.reshape(1,150,150,3) | |
| c1.header('Input Image') | |
| c1.image(im) | |
| loaded_ensemble_model = load_model('ensemble_model.h5') | |
| pred = loaded_ensemble_model.predict([img_array,img_array,img_array]) | |
| labels = {0:'MildDemented',1:'ModerateDemented',2:'NonDemented',3:'VeryMildDemented'} | |
| c2.header('Output') | |
| c2.subheader('Predicted class :') | |
| c2.write(labels[pred.argmax()]) | |
| c2.subheader('With :') | |
| c2.write(f'{int(pred.max()*100)}% assurity') | |