File size: 9,264 Bytes
32e471c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import gradio as gr
import csv
import os
import numpy as np

def load_gpu_data():
    """Load GPU data from gpus.csv file."""
    gpu_data = {}
    csv_path = os.path.join(os.path.dirname(__file__), 'gpus.csv')
    
    try:
        with open(csv_path, 'r') as file:
            reader = csv.DictReader(file)
            for row in reader:
                gpu_name = row['gpu_model'].replace('_', ' ')
                tflops = float(row['sparce_tflops'])
                gpu_data[gpu_name] = tflops
    except Exception as e:
        print(f"Error loading GPU data: {e}")
        gpu_data = {"Custom": 0}
    
    return gpu_data

def calculate_training_time(model_size_billions, tflops_per_gpu, num_gpus, tokens_millions, mfu_percentage):
    """
    Calculate the time to train a model.
    
    Formula:
    - Total FLOPs = 6 * num_params * num_tokens
    - Effective FLOPs per second = tflops_per_gpu * num_gpus * 10^12 * (MFU/100)
    - Training time = Total FLOPs / Effective FLOPs per second
    
    Args:
        model_size_billions: Model size in billions of parameters
        tflops_per_gpu: BF16 TFLOPs per GPU (effective, non-sparsity)
        num_gpus: Number of GPUs used
        tokens_millions: Number of tokens in millions
        mfu_percentage: Model FLOPs Utilization percentage
    
    Returns:
        Training time in hours
    """
    # Convert inputs to base units
    num_params = model_size_billions * 1e9
    num_tokens = tokens_millions * 1e6
    
    # Calculate total FLOPs needed
    total_flops = 6 * num_params * num_tokens
    
    # Calculate effective FLOPs per second
    # tflops_per_gpu is in 10^12 FLOPs per second
    flops_per_second = tflops_per_gpu * num_gpus * 1e12 * (mfu_percentage / 100)
    
    # Calculate training time in seconds
    training_time_seconds = total_flops / flops_per_second
    
    # Convert to hours
    training_time_hours = training_time_seconds / 3600
    
    return training_time_hours

def format_output(hours):
    """Format the output in a readable way."""
    if hours < 24:
        return f"{hours:.2f} hours"
    else:
        days = hours / 24
        if days < 30:
            return f"{days:.2f} days ({hours:.1f} hours)"
        else:
            months = days / 30
            return f"{months:.2f} months ({days:.1f} days, {hours:.0f} hours)"

def slider_to_model_size(value):
    """Convert logarithmic slider value to actual model size in billions."""
    # Map 0-100 to 0.1B-1000B logarithmically
    min_log = np.log10(0.1)  # -1
    max_log = np.log10(1000)  # 3
    log_value = min_log + (max_log - min_log) * value / 100
    return 10 ** log_value

def model_size_to_slider(size_billions):
    """Convert model size in billions to slider value."""
    min_log = np.log10(0.1)
    max_log = np.log10(1000)
    log_value = np.log10(size_billions)
    return 100 * (log_value - min_log) / (max_log - min_log)

def format_model_size(size_billions):
    """Format model size for display."""
    if size_billions < 1:
        return f"{size_billions * 1000:.0f}M"
    elif size_billions < 1000:
        return f"{size_billions:.1f}B"
    else:
        return f"{size_billions / 1000:.1f}T"

def update_calculation(model_size_value, model_size_unit, use_gpu_model, gpu_model, custom_tflops, num_gpus, tokens_value, tokens_unit, mfu_percentage):
    """Update the calculation and return formatted results."""
    # Convert model size to billions
    if model_size_unit == "B":
        model_size_billions = model_size_value
    else:  # T
        model_size_billions = model_size_value * 1000
    
    # Convert tokens to millions
    if tokens_unit == "M":
        tokens_millions = tokens_value
    elif tokens_unit == "B":
        tokens_millions = tokens_value * 1000
    else:  # T
        tokens_millions = tokens_value * 1000000
    
    # Determine TFLOPs value
    if use_gpu_model and gpu_model != "Custom":
        gpu_data = load_gpu_data()
        tflops_per_gpu = gpu_data.get(gpu_model, custom_tflops)
        gpu_info = f"{gpu_model} ({tflops_per_gpu} TFLOPs)"
    else:
        tflops_per_gpu = custom_tflops
        gpu_info = f"Custom ({tflops_per_gpu} TFLOPs)"
    
    hours = calculate_training_time(model_size_billions, tflops_per_gpu, num_gpus, tokens_millions, mfu_percentage)
    
    # Create detailed breakdown
    total_flops = 6 * (model_size_billions * 1e9) * (tokens_millions * 1e6)
    effective_tflops = tflops_per_gpu * num_gpus * (mfu_percentage / 100)
    
    breakdown = f"""
### Calculation Breakdown:
- **GPU Selection**: {gpu_info}
- **Model Size**: {format_model_size(model_size_billions)} parameters ({model_size_billions:.2f}B)
- **Training Tokens**: {tokens_value}{tokens_unit} tokens ({tokens_millions:.0f}M)
- **Total FLOPs**: {total_flops:.2e} FLOPs
- **Formula**: 6 × {model_size_billions:.2f}B params × {tokens_millions:.0f}M tokens
- **Effective TFLOPs**: {effective_tflops:.2f} TFLOPs/s
- **Formula**: {tflops_per_gpu} TFLOPs/GPU × {num_gpus} GPUs × {mfu_percentage}% MFU

### Training Time:
**{format_output(hours)}**
"""
    
    return breakdown

# Load GPU data
gpu_data = load_gpu_data()
gpu_choices = ["Custom"] + list(gpu_data.keys())

# Create the Gradio interface
with gr.Blocks(title="Model Training Time Calculator") as demo:
    gr.Markdown("# Model Training Time Calculator")
    gr.Markdown("Calculate the time required to train a model based on model size, hardware specs, and token count.")
    
    with gr.Row():
        with gr.Column():
            with gr.Row():
                model_size_value = gr.Number(
                    minimum=0.5,
                    maximum=1000,
                    value=7,
                    step=0.1,
                    label="Model Size",
                    info="Enter model size (0.5-1000)"
                )
                model_size_unit = gr.Radio(
                    choices=["B", "T"],
                    value="B",
                    label="Unit",
                    info="Model size unit"
                )
            
            # GPU Selection
            use_gpu_model = gr.Checkbox(
                value=True,
                label="Use GPU Model from List",
                info="Check to select a GPU model, uncheck to input custom TFLOPs"
            )
            
            gpu_model = gr.Dropdown(
                choices=gpu_choices,
                value="H100" if "H100" in gpu_choices else gpu_choices[0],
                label="GPU Model",
                info="Select a GPU model from the list",
                visible=True
            )
            
            custom_tflops = gr.Slider(
                minimum=10,
                maximum=2000,
                value=300,
                step=10,
                label="Custom BF16 TFLOPs per GPU",
                info="Effective (non-sparsity) TFLOPs per GPU",
                visible=False
            )
            
            num_gpus = gr.Slider(
                minimum=1,
                maximum=1024,
                value=8,
                step=1,
                label="Number of GPUs",
                info="Total number of GPUs for training"
            )
            
            with gr.Row():
                tokens_value = gr.Slider(
                    minimum=1,
                    maximum=1000,
                    value=100,
                    step=1,
                    label="Training Tokens",
                    info="Number of training tokens"
                )
                tokens_unit = gr.Radio(
                    choices=["M", "B", "T"],
                    value="B",
                    label="Unit",
                    info="Token count unit"
                )
            
            mfu = gr.Slider(
                minimum=10,
                maximum=100,
                value=50,
                step=5,
                label="Model FLOPs Utilization (MFU) %",
                info="Efficiency of hardware utilization (50% is typical for low-end estimate)"
            )
        
        with gr.Column():
            output = gr.Markdown(label="Results")
    
    # Toggle between GPU model and custom TFLOPs
    def toggle_gpu_input(use_gpu):
        return gr.update(visible=use_gpu), gr.update(visible=not use_gpu or use_gpu and gpu_model.value == "Custom")
    
    use_gpu_model.change(
        fn=toggle_gpu_input,
        inputs=[use_gpu_model],
        outputs=[gpu_model, custom_tflops]
    )
    
    # Show custom TFLOPs when "Custom" is selected
    def check_custom_selected(gpu_model_value):
        return gr.update(visible=gpu_model_value == "Custom")
    
    gpu_model.change(
        fn=check_custom_selected,
        inputs=[gpu_model],
        outputs=[custom_tflops]
    )
    
    # Set up live updating
    all_inputs = [model_size_value, model_size_unit, use_gpu_model, gpu_model, custom_tflops, num_gpus, tokens_value, tokens_unit, mfu]
    
    for input_component in all_inputs:
        input_component.change(
            fn=update_calculation,
            inputs=all_inputs,
            outputs=output
        )
    
    # Initial calculation
    demo.load(
        fn=update_calculation,
        inputs=all_inputs,
        outputs=output
    )

if __name__ == "__main__":
    demo.launch()