File size: 9,264 Bytes
32e471c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 |
import gradio as gr
import csv
import os
import numpy as np
def load_gpu_data():
"""Load GPU data from gpus.csv file."""
gpu_data = {}
csv_path = os.path.join(os.path.dirname(__file__), 'gpus.csv')
try:
with open(csv_path, 'r') as file:
reader = csv.DictReader(file)
for row in reader:
gpu_name = row['gpu_model'].replace('_', ' ')
tflops = float(row['sparce_tflops'])
gpu_data[gpu_name] = tflops
except Exception as e:
print(f"Error loading GPU data: {e}")
gpu_data = {"Custom": 0}
return gpu_data
def calculate_training_time(model_size_billions, tflops_per_gpu, num_gpus, tokens_millions, mfu_percentage):
"""
Calculate the time to train a model.
Formula:
- Total FLOPs = 6 * num_params * num_tokens
- Effective FLOPs per second = tflops_per_gpu * num_gpus * 10^12 * (MFU/100)
- Training time = Total FLOPs / Effective FLOPs per second
Args:
model_size_billions: Model size in billions of parameters
tflops_per_gpu: BF16 TFLOPs per GPU (effective, non-sparsity)
num_gpus: Number of GPUs used
tokens_millions: Number of tokens in millions
mfu_percentage: Model FLOPs Utilization percentage
Returns:
Training time in hours
"""
# Convert inputs to base units
num_params = model_size_billions * 1e9
num_tokens = tokens_millions * 1e6
# Calculate total FLOPs needed
total_flops = 6 * num_params * num_tokens
# Calculate effective FLOPs per second
# tflops_per_gpu is in 10^12 FLOPs per second
flops_per_second = tflops_per_gpu * num_gpus * 1e12 * (mfu_percentage / 100)
# Calculate training time in seconds
training_time_seconds = total_flops / flops_per_second
# Convert to hours
training_time_hours = training_time_seconds / 3600
return training_time_hours
def format_output(hours):
"""Format the output in a readable way."""
if hours < 24:
return f"{hours:.2f} hours"
else:
days = hours / 24
if days < 30:
return f"{days:.2f} days ({hours:.1f} hours)"
else:
months = days / 30
return f"{months:.2f} months ({days:.1f} days, {hours:.0f} hours)"
def slider_to_model_size(value):
"""Convert logarithmic slider value to actual model size in billions."""
# Map 0-100 to 0.1B-1000B logarithmically
min_log = np.log10(0.1) # -1
max_log = np.log10(1000) # 3
log_value = min_log + (max_log - min_log) * value / 100
return 10 ** log_value
def model_size_to_slider(size_billions):
"""Convert model size in billions to slider value."""
min_log = np.log10(0.1)
max_log = np.log10(1000)
log_value = np.log10(size_billions)
return 100 * (log_value - min_log) / (max_log - min_log)
def format_model_size(size_billions):
"""Format model size for display."""
if size_billions < 1:
return f"{size_billions * 1000:.0f}M"
elif size_billions < 1000:
return f"{size_billions:.1f}B"
else:
return f"{size_billions / 1000:.1f}T"
def update_calculation(model_size_value, model_size_unit, use_gpu_model, gpu_model, custom_tflops, num_gpus, tokens_value, tokens_unit, mfu_percentage):
"""Update the calculation and return formatted results."""
# Convert model size to billions
if model_size_unit == "B":
model_size_billions = model_size_value
else: # T
model_size_billions = model_size_value * 1000
# Convert tokens to millions
if tokens_unit == "M":
tokens_millions = tokens_value
elif tokens_unit == "B":
tokens_millions = tokens_value * 1000
else: # T
tokens_millions = tokens_value * 1000000
# Determine TFLOPs value
if use_gpu_model and gpu_model != "Custom":
gpu_data = load_gpu_data()
tflops_per_gpu = gpu_data.get(gpu_model, custom_tflops)
gpu_info = f"{gpu_model} ({tflops_per_gpu} TFLOPs)"
else:
tflops_per_gpu = custom_tflops
gpu_info = f"Custom ({tflops_per_gpu} TFLOPs)"
hours = calculate_training_time(model_size_billions, tflops_per_gpu, num_gpus, tokens_millions, mfu_percentage)
# Create detailed breakdown
total_flops = 6 * (model_size_billions * 1e9) * (tokens_millions * 1e6)
effective_tflops = tflops_per_gpu * num_gpus * (mfu_percentage / 100)
breakdown = f"""
### Calculation Breakdown:
- **GPU Selection**: {gpu_info}
- **Model Size**: {format_model_size(model_size_billions)} parameters ({model_size_billions:.2f}B)
- **Training Tokens**: {tokens_value}{tokens_unit} tokens ({tokens_millions:.0f}M)
- **Total FLOPs**: {total_flops:.2e} FLOPs
- **Formula**: 6 × {model_size_billions:.2f}B params × {tokens_millions:.0f}M tokens
- **Effective TFLOPs**: {effective_tflops:.2f} TFLOPs/s
- **Formula**: {tflops_per_gpu} TFLOPs/GPU × {num_gpus} GPUs × {mfu_percentage}% MFU
### Training Time:
**{format_output(hours)}**
"""
return breakdown
# Load GPU data
gpu_data = load_gpu_data()
gpu_choices = ["Custom"] + list(gpu_data.keys())
# Create the Gradio interface
with gr.Blocks(title="Model Training Time Calculator") as demo:
gr.Markdown("# Model Training Time Calculator")
gr.Markdown("Calculate the time required to train a model based on model size, hardware specs, and token count.")
with gr.Row():
with gr.Column():
with gr.Row():
model_size_value = gr.Number(
minimum=0.5,
maximum=1000,
value=7,
step=0.1,
label="Model Size",
info="Enter model size (0.5-1000)"
)
model_size_unit = gr.Radio(
choices=["B", "T"],
value="B",
label="Unit",
info="Model size unit"
)
# GPU Selection
use_gpu_model = gr.Checkbox(
value=True,
label="Use GPU Model from List",
info="Check to select a GPU model, uncheck to input custom TFLOPs"
)
gpu_model = gr.Dropdown(
choices=gpu_choices,
value="H100" if "H100" in gpu_choices else gpu_choices[0],
label="GPU Model",
info="Select a GPU model from the list",
visible=True
)
custom_tflops = gr.Slider(
minimum=10,
maximum=2000,
value=300,
step=10,
label="Custom BF16 TFLOPs per GPU",
info="Effective (non-sparsity) TFLOPs per GPU",
visible=False
)
num_gpus = gr.Slider(
minimum=1,
maximum=1024,
value=8,
step=1,
label="Number of GPUs",
info="Total number of GPUs for training"
)
with gr.Row():
tokens_value = gr.Slider(
minimum=1,
maximum=1000,
value=100,
step=1,
label="Training Tokens",
info="Number of training tokens"
)
tokens_unit = gr.Radio(
choices=["M", "B", "T"],
value="B",
label="Unit",
info="Token count unit"
)
mfu = gr.Slider(
minimum=10,
maximum=100,
value=50,
step=5,
label="Model FLOPs Utilization (MFU) %",
info="Efficiency of hardware utilization (50% is typical for low-end estimate)"
)
with gr.Column():
output = gr.Markdown(label="Results")
# Toggle between GPU model and custom TFLOPs
def toggle_gpu_input(use_gpu):
return gr.update(visible=use_gpu), gr.update(visible=not use_gpu or use_gpu and gpu_model.value == "Custom")
use_gpu_model.change(
fn=toggle_gpu_input,
inputs=[use_gpu_model],
outputs=[gpu_model, custom_tflops]
)
# Show custom TFLOPs when "Custom" is selected
def check_custom_selected(gpu_model_value):
return gr.update(visible=gpu_model_value == "Custom")
gpu_model.change(
fn=check_custom_selected,
inputs=[gpu_model],
outputs=[custom_tflops]
)
# Set up live updating
all_inputs = [model_size_value, model_size_unit, use_gpu_model, gpu_model, custom_tflops, num_gpus, tokens_value, tokens_unit, mfu]
for input_component in all_inputs:
input_component.change(
fn=update_calculation,
inputs=all_inputs,
outputs=output
)
# Initial calculation
demo.load(
fn=update_calculation,
inputs=all_inputs,
outputs=output
)
if __name__ == "__main__":
demo.launch() |