Spaces:
Running
on
L4
Running
on
L4
Update app.py
Browse files
app.py
CHANGED
|
@@ -145,11 +145,16 @@ def inference(image, face_align, background_enhance, face_upsample, upscale, cod
|
|
| 145 |
upscale = 4
|
| 146 |
if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
|
| 147 |
upscale = 2
|
| 148 |
-
if max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
|
| 149 |
-
upscale = 1
|
| 150 |
-
background_enhance = False
|
| 151 |
-
face_upsample = False
|
| 152 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
face_helper = FaceRestoreHelper(
|
| 154 |
upscale,
|
| 155 |
face_size=512,
|
|
@@ -182,9 +187,10 @@ def inference(image, face_align, background_enhance, face_upsample, upscale, cod
|
|
| 182 |
if min(img.shape[:2]) > 1000 and num_det_faces > 15:
|
| 183 |
raise gr.Error(
|
| 184 |
"Too many faces detected (>15) in a high-resolution image. "
|
| 185 |
-
"To keep the demo responsive, this case is skipped. "
|
| 186 |
-
"For such inputs, please deploy
|
| 187 |
)
|
|
|
|
| 188 |
|
| 189 |
# face restoration for each cropped face
|
| 190 |
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
|
@@ -326,7 +332,7 @@ demo = gr.Interface(
|
|
| 326 |
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
|
| 327 |
], [
|
| 328 |
gr.Image(type="filepath", label="Output"),
|
| 329 |
-
gr.Markdown("Please download the output within 30 seconds
|
| 330 |
],
|
| 331 |
title=title,
|
| 332 |
description=description,
|
|
@@ -339,7 +345,7 @@ demo = gr.Interface(
|
|
| 339 |
['05.jpg', True, True, True, 2, 0.1],
|
| 340 |
['06.png', False, True, True, 1, 0.5]
|
| 341 |
],
|
| 342 |
-
concurrency_limit=
|
| 343 |
)
|
| 344 |
|
| 345 |
DEBUG = os.getenv('DEBUG') == '1'
|
|
|
|
| 145 |
upscale = 4
|
| 146 |
if upscale > 2 and max(img.shape[:2])>1000: # avoid memory exceeded due to too large img resolution
|
| 147 |
upscale = 2
|
| 148 |
+
if min(img.shape[:2]) > 1100 or max(img.shape[:2]) > 1500: # avoid memory exceeded due to too large img resolution
|
| 149 |
+
# upscale = 1
|
| 150 |
+
# background_enhance = False
|
| 151 |
+
# face_upsample = False
|
| 152 |
+
raise gr.Error(
|
| 153 |
+
"Image resolution is too large (short side > 1100 or long side > 1500). "
|
| 154 |
+
"To keep the demo responsive and avoid long queue times, this case is skipped. "
|
| 155 |
+
"For such inputs, please deploy this demo locally and remove this limit."
|
| 156 |
+
)
|
| 157 |
+
|
| 158 |
face_helper = FaceRestoreHelper(
|
| 159 |
upscale,
|
| 160 |
face_size=512,
|
|
|
|
| 187 |
if min(img.shape[:2]) > 1000 and num_det_faces > 15:
|
| 188 |
raise gr.Error(
|
| 189 |
"Too many faces detected (>15) in a high-resolution image. "
|
| 190 |
+
"To keep the demo responsive and avoid long queue times, this case is skipped. "
|
| 191 |
+
"For such inputs, please deploy this demo locally and remove this limit."
|
| 192 |
)
|
| 193 |
+
|
| 194 |
|
| 195 |
# face restoration for each cropped face
|
| 196 |
for idx, cropped_face in enumerate(face_helper.cropped_faces):
|
|
|
|
| 332 |
gr.Slider(0, 1, value=0.5, step=0.01, label='Codeformer_Fidelity (0 for better quality, 1 for better identity)')
|
| 333 |
], [
|
| 334 |
gr.Image(type="filepath", label="Output"),
|
| 335 |
+
gr.Markdown("**Please download the output within 30 seconds.**")
|
| 336 |
],
|
| 337 |
title=title,
|
| 338 |
description=description,
|
|
|
|
| 345 |
['05.jpg', True, True, True, 2, 0.1],
|
| 346 |
['06.png', False, True, True, 1, 0.5]
|
| 347 |
],
|
| 348 |
+
concurrency_limit=2
|
| 349 |
)
|
| 350 |
|
| 351 |
DEBUG = os.getenv('DEBUG') == '1'
|