File size: 20,176 Bytes
3a07545
 
 
 
 
ee15403
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69427f5
 
 
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
 
 
 
 
 
 
 
 
 
 
 
69427f5
 
3a07545
 
 
 
 
 
 
67945d8
 
 
 
 
 
 
 
 
28e5e1b
 
 
 
 
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
e687096
3a07545
 
 
 
 
 
 
 
e687096
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
 
 
 
 
 
 
 
 
 
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
 
 
 
 
 
 
 
 
 
 
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
 
 
 
 
 
 
 
 
 
 
3a07545
 
 
 
 
e687096
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
67945d8
3a07545
 
 
 
 
 
67945d8
 
3a07545
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e687096
3a07545
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
"""
AI model provider management and configuration.
"""
import os
from typing import Dict, List, Tuple, Optional
from .agent_models import AgentConfig


class ModelProvider:
    """Manages AI model configurations and provider-specific logic."""

    # Available models via LiteLLM and native OpenAI
    # Updated to include both Anthropic and OpenAI models as of January 2025
    SUPPORTED_MODELS = {
        # === ANTHROPIC MODELS (via LiteLLM) ===
        # Claude-4 models (latest generation - may require special access)
        "claude-4-opus": "litellm/anthropic/claude-opus-4-20250514",
        "claude-4-sonnet": "litellm/anthropic/claude-sonnet-4-20250514",
        
        # Claude-3.7 models (newest stable)
        "claude-3.7-sonnet": "litellm/anthropic/claude-3-7-sonnet-20250219",
        
        # Claude-3.5 models (widely available)
        "claude-3.5-sonnet-latest": "litellm/anthropic/claude-3-5-sonnet-20241022",  # Latest version
        "claude-3.5-sonnet": "litellm/anthropic/claude-3-5-sonnet-20240620",        # Previous stable version
        "claude-3.5-haiku": "litellm/anthropic/claude-3-5-haiku-20241022",          # New Haiku 3.5 model
        
        # Claude-3 models (legacy but still available)
        "claude-3-haiku": "litellm/anthropic/claude-3-haiku-20240307",
        
        # === OPENAI MODELS (native) ===
        # GPT-4o models (latest generation with vision)
        "gpt-4o": "gpt-4o",                                     # Latest GPT-4o model
        "gpt-4o-mini": "gpt-4o-mini",                          # Compact version
        
        # GPT-4 models (previous generation)
        "gpt-4-turbo": "gpt-4-turbo",                          # Latest GPT-4 Turbo
        "gpt-4": "gpt-4",                                      # Original GPT-4
        
        # GPT-3.5 models (cost-effective)
        "gpt-3.5-turbo": "gpt-3.5-turbo",                     # Latest 3.5 turbo
        
        # Reasoning models (o-series)
        "o1-preview": "o1-preview",                            # Advanced reasoning
        "o1-mini": "o1-mini",                                  # Compact reasoning
        "o3-mini": "o3-mini",                                  # Latest reasoning model
        
        # === GROQ MODELS (via LiteLLM) ===
        # Llama models (Meta)
        "llama-3.3-70b-versatile": "litellm/groq/llama-3.3-70b-versatile",     # Latest Llama 3.3
        "llama-3.1-8b-instant": "litellm/groq/llama-3.1-8b-instant",           # Fast Llama 3.1 8B
        "llama3-8b-8192": "litellm/groq/llama3-8b-8192",                       # Llama 3 8B with 8K context
        "llama3-70b-8192": "litellm/groq/llama3-70b-8192",                     # Llama 3 70B with 8K context
        
        # Gemma models (Google)
        "gemma2-9b-it": "litellm/groq/gemma2-9b-it",                           # Gemma 2 9B instruction-tuned
        
        # Mixtral models (Mistral)
        "mixtral-8x7b-32768": "litellm/groq/mixtral-8x7b-32768",               # Mixtral 8x7B with 32K context
        
        # Other featured models
        "qwen3-32b": "litellm/groq/qwen/qwen3-32b",                            # Qwen 3 32B
        "kimi-k2-instruct": "litellm/groq/moonshotai/kimi-k2-instruct",        # Kimi K2 MoE model
        
        # Whisper models (Speech-to-Text)
        "whisper-large-v3": "litellm/groq/whisper-large-v3",                   # Whisper Large v3
        "whisper-large-v3-turbo": "litellm/groq/whisper-large-v3-turbo",       # Whisper Large v3 Turbo
        
        # PlayAI TTS models (Text-to-Speech)
        "playai-tts": "litellm/groq/playai-tts",                               # English TTS model
        "playai-tts-arabic": "litellm/groq/playai-tts-arabic",                 # Arabic TTS model
    }

    @classmethod
    def get_model_info(cls, model_name: str) -> str:
        """Get information about a specific model."""
        model_info = {
            # === ANTHROPIC MODELS ===
            "claude-4-opus": "Most capable and intelligent model. Superior reasoning, complex tasks (Premium tier)",
            "claude-4-sonnet": "High-performance model with exceptional reasoning and efficiency (Premium tier)", 
            "claude-3.7-sonnet": "Enhanced model with extended thinking capabilities (Recommended)",
            "claude-3.5-sonnet-latest": "Latest Claude 3.5 Sonnet with improved capabilities (Recommended)",
            "claude-3.5-sonnet": "Excellent balance of intelligence and speed (Stable version)",
            "claude-3.5-haiku": "Fast and compact model for near-instant responsiveness (New!)",
            "claude-3-haiku": "Fastest model, good for simple tasks and cost-effective (Legacy but reliable)",
            
            # === OPENAI MODELS ===
            "gpt-4o": "Latest GPT-4o with vision, web browsing, and advanced capabilities (Recommended)",
            "gpt-4o-mini": "Compact GPT-4o model - fast, capable, and cost-effective (Recommended)",
            "gpt-4-turbo": "GPT-4 Turbo with large context window and improved efficiency",
            "gpt-4": "Original GPT-4 model - highly capable but slower than turbo variants",
            "gpt-3.5-turbo": "Fast and cost-effective model, good for straightforward tasks",
            "o1-preview": "Advanced reasoning model with enhanced problem-solving (Preview)",
            "o1-mini": "Compact reasoning model for faster inference with good capabilities",
            "o3-mini": "Latest reasoning model with improved performance (New!)",
            
            # === GROQ MODELS ===
            "llama-3.3-70b-versatile": "Latest Llama 3.3 70B model - excellent for complex tasks (Meta via Groq)",
            "llama-3.1-8b-instant": "Fast Llama 3.1 8B model - great for quick responses (Meta via Groq)",
            "llama3-8b-8192": "Llama 3 8B with 8K context window - efficient and capable (Meta via Groq)",
            "llama3-70b-8192": "Llama 3 70B with 8K context window - high performance (Meta via Groq)",
            "gemma2-9b-it": "Google Gemma 2 9B instruction-tuned - efficient and smart (Google via Groq)",
            "mixtral-8x7b-32768": "Mistral Mixtral 8x7B with 32K context - excellent reasoning (Mistral via Groq)",
            "qwen3-32b": "Alibaba Qwen 3 32B - advanced multilingual capabilities (Alibaba via Groq)",
            "kimi-k2-instruct": "Moonshot Kimi K2 MoE - 1T parameters with tool use (Moonshot via Groq)",
            "whisper-large-v3": "OpenAI Whisper Large v3 - best speech-to-text (OpenAI via Groq)",
            "whisper-large-v3-turbo": "OpenAI Whisper Large v3 Turbo - faster speech-to-text (OpenAI via Groq)",
            "playai-tts": "PlayAI English TTS - high-quality text-to-speech with 19 voices (PlayAI via Groq)",
            "playai-tts-arabic": "PlayAI Arabic TTS - high-quality Arabic text-to-speech with 4 voices (PlayAI via Groq)",
        }
        return model_info.get(model_name, "Model information not available")

    @classmethod
    def get_recommended_models(cls) -> List[str]:
        """Get a list of recommended models that are most likely to be available."""
        return [
            # OpenAI recommendations (now default)
            "gpt-4o",                  # Latest flagship model - NEW DEFAULT
            "gpt-4o-mini",             # Best balance of capability and cost
            "gpt-3.5-turbo",          # Most cost-effective OpenAI model
            "gpt-4-turbo",            # Solid previous generation
            "o1-mini",                # Good reasoning capabilities
            
            # Groq recommendations (fast and cost-effective)
            "llama-3.3-70b-versatile", # Latest and most capable Llama model
            "llama-3.1-8b-instant",   # Fastest for simple tasks
            "gemma2-9b-it",           # Efficient Google model
            "mixtral-8x7b-32768",     # Excellent reasoning with large context
            
            # Anthropic recommendations (most reliable)
            "claude-3.5-haiku",        # New fast model
            "claude-3-haiku",          # Most reliable, widely available, cost-effective
            "claude-3.5-sonnet",       # Stable version, widely available
            "claude-3.5-sonnet-latest", # Latest improvements
            "claude-3.7-sonnet",       # Newest stable with extended thinking
        ]

    @classmethod 
    def get_models_by_provider(cls) -> Dict[str, Dict[str, str]]:
        """Get models organized by provider."""
        models = cls.SUPPORTED_MODELS
        providers = {
            "anthropic": {},
            "openai": {},
            "groq": {},
            "unknown": {}
        }
        
        for name, full_name in models.items():
            if "claude" in name.lower() or "anthropic" in full_name.lower():
                providers["anthropic"][name] = full_name
            elif any(indicator in name.lower() for indicator in ["gpt-", "o1-", "o3-", "openai/"]):
                providers["openai"][name] = full_name
            elif "groq" in full_name.lower() or name in ["llama-3.3-70b-versatile", "llama-3.1-8b-instant", "llama3-8b-8192", "llama3-70b-8192", "gemma2-9b-it", "mixtral-8x7b-32768", "qwen3-32b", "kimi-k2-instruct", "whisper-large-v3", "whisper-large-v3-turbo"]:
                providers["groq"][name] = full_name
            else:
                providers["unknown"][name] = full_name
                
        return providers

    @classmethod
    def get_models_table_data(cls) -> List[List[str]]:
        """Get model data formatted for table display."""
        models = cls.SUPPORTED_MODELS
        table_data = []
        
        # Define capability ratings
        capability_ratings = {
            # Anthropic models
            "claude-4-opus": "β˜…β˜…β˜…β˜…β˜…",
            "claude-4-sonnet": "β˜…β˜…β˜…β˜…β˜†", 
            "claude-3.7-sonnet": "β˜…β˜…β˜…β˜…β˜†",
            "claude-3.5-sonnet-latest": "β˜…β˜…β˜…β˜…β˜†",
            "claude-3.5-sonnet": "β˜…β˜…β˜…β˜…β˜†",
            "claude-3.5-haiku": "β˜…β˜…β˜…β˜†β˜†",
            "claude-3-haiku": "β˜…β˜…β˜…β˜†β˜†",
            # OpenAI models
            "gpt-4o": "β˜…β˜…β˜…β˜…β˜…",
            "gpt-4o-mini": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-4-turbo": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-4": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-3.5-turbo": "β˜…β˜…β˜…β˜†β˜†",
            "o1-preview": "β˜…β˜…β˜…β˜…β˜…",
            "o1-mini": "β˜…β˜…β˜…β˜…β˜†",
            "o3-mini": "β˜…β˜…β˜…β˜…β˜†",
            # Groq models
            "llama-3.3-70b-versatile": "β˜…β˜…β˜…β˜…β˜†",
            "llama-3.1-8b-instant": "β˜…β˜…β˜…β˜†β˜†",
            "llama3-8b-8192": "β˜…β˜…β˜…β˜†β˜†",
            "llama3-70b-8192": "β˜…β˜…β˜…β˜…β˜†",
            "gemma2-9b-it": "β˜…β˜…β˜…β˜†β˜†",
            "mixtral-8x7b-32768": "β˜…β˜…β˜…β˜…β˜†",
            "qwen3-32b": "β˜…β˜…β˜…β˜…β˜†",
            "kimi-k2-instruct": "β˜…β˜…β˜…β˜…β˜…",
            "whisper-large-v3": "β˜…β˜…β˜…β˜…β˜…",
            "whisper-large-v3-turbo": "β˜…β˜…β˜…β˜…β˜†",
        }
        
        # Define speed ratings
        speed_ratings = {
            # Anthropic models
            "claude-4-opus": "β˜…β˜…β˜…β˜†β˜†",
            "claude-4-sonnet": "β˜…β˜…β˜…β˜…β˜†", 
            "claude-3.7-sonnet": "β˜…β˜…β˜…β˜…β˜†",
            "claude-3.5-sonnet-latest": "β˜…β˜…β˜…β˜…β˜†",
            "claude-3.5-sonnet": "β˜…β˜…β˜…β˜…β˜†",
            "claude-3.5-haiku": "β˜…β˜…β˜…β˜…β˜…",
            "claude-3-haiku": "β˜…β˜…β˜…β˜…β˜…",
            # OpenAI models
            "gpt-4o": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-4o-mini": "β˜…β˜…β˜…β˜…β˜…",
            "gpt-4-turbo": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-4": "β˜…β˜…β˜…β˜†β˜†",
            "gpt-3.5-turbo": "β˜…β˜…β˜…β˜…β˜…",
            "o1-preview": "β˜…β˜…β˜†β˜†β˜†",
            "o1-mini": "β˜…β˜…β˜…β˜†β˜†",
            "o3-mini": "β˜…β˜…β˜…β˜…β˜†",
            # Groq models (Groq is known for speed!)
            "llama-3.3-70b-versatile": "β˜…β˜…β˜…β˜…β˜…",
            "llama-3.1-8b-instant": "β˜…β˜…β˜…β˜…β˜…",
            "llama3-8b-8192": "β˜…β˜…β˜…β˜…β˜…",
            "llama3-70b-8192": "β˜…β˜…β˜…β˜…β˜…",
            "gemma2-9b-it": "β˜…β˜…β˜…β˜…β˜…",
            "mixtral-8x7b-32768": "β˜…β˜…β˜…β˜…β˜…",
            "qwen3-32b": "β˜…β˜…β˜…β˜…β˜…",
            "kimi-k2-instruct": "β˜…β˜…β˜…β˜…β˜†",
            "whisper-large-v3": "β˜…β˜…β˜…β˜…β˜†",
            "whisper-large-v3-turbo": "β˜…β˜…β˜…β˜…β˜…",
            "o3-mini": "β˜…β˜…β˜…β˜…β˜†",
        }
        
        # Define cost ratings (more stars = more expensive)
        cost_ratings = {
            # Anthropic models
            "claude-4-opus": "β˜…β˜…β˜…β˜…β˜…",
            "claude-4-sonnet": "β˜…β˜…β˜…β˜…β˜†", 
            "claude-3.7-sonnet": "β˜…β˜…β˜…β˜†β˜†",
            "claude-3.5-sonnet-latest": "β˜…β˜…β˜…β˜†β˜†",
            "claude-3.5-sonnet": "β˜…β˜…β˜…β˜†β˜†",
            "claude-3.5-haiku": "β˜…β˜…β˜†β˜†β˜†",
            "claude-3-haiku": "β˜…β˜†β˜†β˜†β˜†",
            # OpenAI models
            "gpt-4o": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-4o-mini": "β˜…β˜…β˜†β˜†β˜†",
            "gpt-4-turbo": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-4": "β˜…β˜…β˜…β˜…β˜†",
            "gpt-3.5-turbo": "β˜…β˜†β˜†β˜†β˜†",
            "o1-preview": "β˜…β˜…β˜…β˜…β˜…",
            "o1-mini": "β˜…β˜…β˜…β˜†β˜†",
            "o3-mini": "β˜…β˜…β˜…β˜†β˜†",
            # Groq models (very cost-effective)
            "llama-3.3-70b-versatile": "β˜…β˜†β˜†β˜†β˜†",
            "llama-3.1-8b-instant": "β˜…β˜†β˜†β˜†β˜†",
            "llama3-8b-8192": "β˜…β˜†β˜†β˜†β˜†",
            "llama3-70b-8192": "β˜…β˜†β˜†β˜†β˜†",
            "gemma2-9b-it": "β˜…β˜†β˜†β˜†β˜†",
            "mixtral-8x7b-32768": "β˜…β˜†β˜†β˜†β˜†",
            "qwen3-32b": "β˜…β˜†β˜†β˜†β˜†",
            "kimi-k2-instruct": "β˜…β˜…β˜†β˜†β˜†",
            "whisper-large-v3": "β˜…β˜†β˜†β˜†β˜†",
            "whisper-large-v3-turbo": "β˜…β˜†β˜†β˜†β˜†",
        }
        
        recommended = cls.get_recommended_models()
        
        for model_name, full_path in models.items():
            if "claude" in model_name.lower():
                provider = "πŸ”΅ Anthropic"
            elif "groq" in full_path.lower() or model_name in ["llama-3.3-70b-versatile", "llama-3.1-8b-instant", "llama3-8b-8192", "llama3-70b-8192", "gemma2-9b-it", "mixtral-8x7b-32768", "qwen3-32b", "kimi-k2-instruct", "whisper-large-v3", "whisper-large-v3-turbo"]:
                # Show actual model provider with Groq hosting indication
                if model_name.startswith("llama"):
                    provider = "πŸš€ Meta (via Groq)"
                elif model_name.startswith("gemma"):
                    provider = "πŸš€ Google (via Groq)"
                elif model_name.startswith("mixtral"):
                    provider = "πŸš€ Mistral (via Groq)"
                elif model_name.startswith("qwen"):
                    provider = "πŸš€ Alibaba (via Groq)"
                elif model_name.startswith("kimi"):
                    provider = "οΏ½ Moonshot (via Groq)"
                elif model_name.startswith("whisper"):
                    provider = "πŸš€ OpenAI (via Groq)"
                else:
                    provider = "πŸš€ Groq"
            elif any(indicator in model_name.lower() for indicator in ["gpt-", "o1-", "o3-"]):
                provider = "�🟒 OpenAI"
            else:
                provider = "❓ Unknown"
            is_recommended = "⭐" if model_name in recommended else ""
            
            table_data.append([
                is_recommended,
                provider,
                model_name,
                capability_ratings.get(model_name, "β˜…β˜…β˜…β˜†β˜†"),
                speed_ratings.get(model_name, "β˜…β˜…β˜…β˜†β˜†"),
                cost_ratings.get(model_name, "β˜…β˜…β˜…β˜†β˜†"),
                cls.get_model_info(model_name)
            ])
        
        return table_data

    @classmethod
    def validate_model_name(cls, model_name: str) -> Tuple[bool, str]:
        """
        Validate if a model name is in our supported list and provide helpful feedback.
        
        Returns:
            tuple: (is_valid, message)
        """
        if model_name in cls.SUPPORTED_MODELS:
            full_name = cls.SUPPORTED_MODELS[model_name]
            return True, f"Valid model: {model_name} -> {full_name}"
        elif model_name in cls.SUPPORTED_MODELS.values():
            return True, f"Valid full model identifier: {model_name}"
        else:
            recommended = ", ".join(cls.get_recommended_models())
            return False, f"Model '{model_name}' not found. Recommended models: {recommended}"

    @classmethod
    def is_openai_model(cls, model_name: str, full_model_name: str) -> bool:
        """Check if this is an OpenAI model that should use native API."""
        # Check direct model name matches
        openai_models = ["gpt-4o", "gpt-4o-mini", "gpt-4-turbo", "gpt-4", "gpt-3.5-turbo", "o1-preview", "o1-mini", "o3-mini"]
        if model_name in openai_models:
            return True
        
        # Check for OpenAI indicators in model names
        openai_prefixes = ["gpt-", "o1-", "o3-", "openai/", "litellm/openai/"]
        for prefix in openai_prefixes:
            if prefix in model_name.lower() or prefix in full_model_name.lower():
                return True
        
        return False
    
    @classmethod
    def get_provider(cls, model_name: str, full_model_name: str) -> str:
        """Determine the provider based on the model."""
        if cls.is_openai_model(model_name, full_model_name):
            return "openai"
        elif "claude" in model_name.lower() or "anthropic" in full_model_name.lower():
            return "anthropic"
        elif "groq" in full_model_name.lower() or model_name in ["llama-3.3-70b-versatile", "llama-3.1-8b-instant", "llama3-8b-8192", "llama3-70b-8192", "gemma2-9b-it", "mixtral-8x7b-32768", "qwen3-32b", "kimi-k2-instruct", "whisper-large-v3", "whisper-large-v3-turbo"]:
            return "groq"
        else:
            return "unknown"

    @classmethod
    def resolve_model_name(cls, model_name: Optional[str] = None) -> str:
        """
        Resolve model name from various sources (env vars, default, etc.).
        
        Args:
            model_name: Explicit model name, if provided
            
        Returns:
            Resolved model name
        """
        if model_name is None:
            # Check environment variables in priority order
            model_name = (
                os.getenv("AI_MODEL") or 
                os.getenv("ANTHROPIC_MODEL") or 
                os.getenv("OPENAI_MODEL") or 
                os.getenv("GROQ_MODEL") or
                "gpt-4o"  # Default fallback - OpenAI's flagship model for excellent performance
            )
        
        # Validate the model name
        is_valid, validation_message = cls.validate_model_name(model_name)
        if not is_valid:
            print(f"Warning: {validation_message}")
            print(f"Falling back to default model: gpt-4o")
            model_name = "gpt-4o"
        
        return model_name

    @classmethod
    def get_final_model_identifier(cls, model_name: str) -> str:
        """
        Get the final model identifier to use with the agents library.
        
        Args:
            model_name: Model name (key or full identifier)
            
        Returns:
            Final model identifier for the agents library
        """
        # Resolve model name to full identifier
        if model_name in cls.SUPPORTED_MODELS:
            full_model_name = cls.SUPPORTED_MODELS[model_name]
        else:
            # Assume it's already a full model identifier
            full_model_name = model_name
        
        # Determine if this is an OpenAI model or needs LiteLLM prefix
        if cls.is_openai_model(model_name, full_model_name):
            # Use native OpenAI model (no prefix needed)
            final_model = full_model_name
        else:
            # For Anthropic and Groq models, use the full model name as-is since it already has litellm/ prefix
            final_model = full_model_name
        
        return final_model