File size: 3,817 Bytes
3881be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40709e4
 
 
 
 
 
 
 
 
 
 
3881be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
import cv2
import insightface
from insightface.app import FaceAnalysis
import os

class FaceSwapper:
    def __init__(self):
        self.app = FaceAnalysis(name='buffalo_l')
        self.app.prepare(ctx_id=0, det_size=(640, 640))
        self.swapper = insightface.model_zoo.get_model(
            'inswapper_128.onnx', download=True, download_zip=True
        )

    def swap_faces(self, source_path, source_face_idx, target_path, target_face_idx):
        source_img = cv2.imread(source_path)
        target_img = cv2.imread(target_path)

        if source_img is None or target_img is None:
            raise ValueError("Could not read one or both images")

        source_faces = self.app.get(source_img)
        target_faces = self.app.get(target_img)

        source_faces = sorted(source_faces, key=lambda x: x.bbox[0])
        target_faces = sorted(target_faces, key=lambda x: x.bbox[0])

        if len(source_faces) < source_face_idx or source_face_idx < 1:
            raise ValueError(f"Source image contains {len(source_faces)} faces, but requested face {source_face_idx}")
        if len(target_faces) < target_face_idx or target_face_idx < 1:
            raise ValueError(f"Target image contains {len(target_faces)} faces, but requested face {target_face_idx}")

        source_face = source_faces[source_face_idx - 1]
        target_face = target_faces[target_face_idx - 1]

        result = self.swapper.get(target_img, target_face, source_face, paste_back=True)
        return result

    def count_faces(self, img_path):
        """
        Counts the number of faces in the given image file.
        """
        img = cv2.imread(img_path)
        # Use your face detector here. For example, with OpenCV's Haar cascade:
        face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml")
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        faces = face_cascade.detectMultiScale(gray, 1.1, 4)
        return len(faces)

def main():
    # Paths relative to root
    source_path = os.path.join("SinglePhoto", "data_src.jpg")
    target_path = os.path.join("SinglePhoto", "data_dst.jpg")
    output_dir = os.path.join("SinglePhoto", "output")
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    swapper = FaceSwapper()

    try:
        # Ask user for target_face_idx, default to 1 if no input or invalid input
        try:
            user_input = input("Enter the target face index (starting from 1, default is 1): ")
            target_face_idx = int(user_input) if user_input.strip() else 1
            if target_face_idx < 1:
                print("Invalid index. Using default value 1.")
                target_face_idx = 1
        except ValueError:
            print("Invalid input. Using default value 1.")
            target_face_idx = 1

        try:
            result = swapper.swap_faces(
                source_path=source_path,
                source_face_idx=1,
                target_path=target_path,
                target_face_idx=target_face_idx
            )
        except ValueError as ve:
            if "Target image contains" in str(ve):
                print(f"Target face idx {target_face_idx} not found, trying with idx 1.")
                result = swapper.swap_faces(
                    source_path=source_path,
                    source_face_idx=1,
                    target_path=target_path,
                    target_face_idx=1
                )
            else:
                raise ve
        output_path = os.path.join(output_dir, "swapped_face.jpg")
        cv2.imwrite(output_path, result)
        print(f"Face swap completed successfully. Result saved to: {output_path}")
    except Exception as e:
        print(f"Error occurred: {str(e)}")

if __name__ == "__main__":
    main()