import cv2 import insightface from insightface.app import FaceAnalysis import os class FaceSwapper: def __init__(self): self.app = FaceAnalysis(name='buffalo_l') self.app.prepare(ctx_id=0, det_size=(640, 640)) self.swapper = insightface.model_zoo.get_model( 'inswapper_128.onnx', download=True, download_zip=True ) def swap_faces(self, source_path, source_face_idx, target_path, target_face_idx): source_img = cv2.imread(source_path) target_img = cv2.imread(target_path) if source_img is None or target_img is None: raise ValueError("Could not read one or both images") source_faces = self.app.get(source_img) target_faces = self.app.get(target_img) source_faces = sorted(source_faces, key=lambda x: x.bbox[0]) target_faces = sorted(target_faces, key=lambda x: x.bbox[0]) if len(source_faces) < source_face_idx or source_face_idx < 1: raise ValueError(f"Source image contains {len(source_faces)} faces, but requested face {source_face_idx}") if len(target_faces) < target_face_idx or target_face_idx < 1: raise ValueError(f"Target image contains {len(target_faces)} faces, but requested face {target_face_idx}") source_face = source_faces[source_face_idx - 1] target_face = target_faces[target_face_idx - 1] result = self.swapper.get(target_img, target_face, source_face, paste_back=True) return result def count_faces(self, img_path): """ Counts the number of faces in the given image file. """ img = cv2.imread(img_path) # Use your face detector here. For example, with OpenCV's Haar cascade: face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + "haarcascade_frontalface_default.xml") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.1, 4) return len(faces) def main(): # Paths relative to root source_path = os.path.join("SinglePhoto", "data_src.jpg") target_path = os.path.join("SinglePhoto", "data_dst.jpg") output_dir = os.path.join("SinglePhoto", "output") if not os.path.exists(output_dir): os.makedirs(output_dir) swapper = FaceSwapper() try: # Ask user for target_face_idx, default to 1 if no input or invalid input try: user_input = input("Enter the target face index (starting from 1, default is 1): ") target_face_idx = int(user_input) if user_input.strip() else 1 if target_face_idx < 1: print("Invalid index. Using default value 1.") target_face_idx = 1 except ValueError: print("Invalid input. Using default value 1.") target_face_idx = 1 try: result = swapper.swap_faces( source_path=source_path, source_face_idx=1, target_path=target_path, target_face_idx=target_face_idx ) except ValueError as ve: if "Target image contains" in str(ve): print(f"Target face idx {target_face_idx} not found, trying with idx 1.") result = swapper.swap_faces( source_path=source_path, source_face_idx=1, target_path=target_path, target_face_idx=1 ) else: raise ve output_path = os.path.join(output_dir, "swapped_face.jpg") cv2.imwrite(output_path, result) print(f"Face swap completed successfully. Result saved to: {output_path}") except Exception as e: print(f"Error occurred: {str(e)}") if __name__ == "__main__": main()