Spaces:
Configuration error
Configuration error
# pytorch_diffusion + derived encoder decoder | |
import math | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
from beartype import beartype | |
from beartype.typing import Union, Tuple, Optional, List | |
from einops import rearrange | |
def cast_tuple(t, length=1): | |
return t if isinstance(t, tuple) else ((t,) * length) | |
def divisible_by(num, den): | |
return (num % den) == 0 | |
def is_odd(n): | |
return not divisible_by(n, 2) | |
def get_timestep_embedding(timesteps, embedding_dim): | |
""" | |
This matches the implementation in Denoising Diffusion Probabilistic Models: | |
From Fairseq. | |
Build sinusoidal embeddings. | |
This matches the implementation in tensor2tensor, but differs slightly | |
from the description in Section 3.5 of "Attention Is All You Need". | |
""" | |
assert len(timesteps.shape) == 1 | |
half_dim = embedding_dim // 2 | |
emb = math.log(10000) / (half_dim - 1) | |
emb = torch.exp(torch.arange(half_dim, dtype=torch.float32) * -emb) | |
emb = emb.to(device=timesteps.device) | |
emb = timesteps.float()[:, None] * emb[None, :] | |
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) | |
if embedding_dim % 2 == 1: # zero pad | |
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) | |
return emb | |
def nonlinearity(x): | |
# swish | |
return x * torch.sigmoid(x) | |
class CausalConv3d(nn.Module): | |
def __init__( | |
self, chan_in, chan_out, kernel_size: Union[int, Tuple[int, int, int]], pad_mode="constant", **kwargs | |
): | |
super().__init__() | |
kernel_size = cast_tuple(kernel_size, 3) | |
time_kernel_size, height_kernel_size, width_kernel_size = kernel_size | |
assert is_odd(height_kernel_size) and is_odd(width_kernel_size) | |
dilation = kwargs.pop("dilation", 1) | |
stride = kwargs.pop("stride", 1) | |
self.pad_mode = pad_mode | |
time_pad = dilation * (time_kernel_size - 1) + (1 - stride) | |
height_pad = height_kernel_size // 2 | |
width_pad = width_kernel_size // 2 | |
self.height_pad = height_pad | |
self.width_pad = width_pad | |
self.time_pad = time_pad | |
self.time_causal_padding = (width_pad, width_pad, height_pad, height_pad, time_pad, 0) | |
stride = (stride, 1, 1) | |
dilation = (dilation, 1, 1) | |
self.conv = nn.Conv3d(chan_in, chan_out, kernel_size, stride=stride, dilation=dilation, **kwargs) | |
def forward(self, x): | |
if self.pad_mode == "constant": | |
causal_padding_3d = (self.time_pad, 0, self.width_pad, self.width_pad, self.height_pad, self.height_pad) | |
x = F.pad(x, causal_padding_3d, mode="constant", value=0) | |
elif self.pad_mode == "first": | |
pad_x = torch.cat([x[:, :, :1]] * self.time_pad, dim=2) | |
x = torch.cat([pad_x, x], dim=2) | |
causal_padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) | |
x = F.pad(x, causal_padding_2d, mode="constant", value=0) | |
elif self.pad_mode == "reflect": | |
# reflect padding | |
reflect_x = x[:, :, 1 : self.time_pad + 1, :, :].flip(dims=[2]) | |
if reflect_x.shape[2] < self.time_pad: | |
reflect_x = torch.cat( | |
[torch.zeros_like(x[:, :, :1, :, :])] * (self.time_pad - reflect_x.shape[2]) + [reflect_x], dim=2 | |
) | |
x = torch.cat([reflect_x, x], dim=2) | |
causal_padding_2d = (self.width_pad, self.width_pad, self.height_pad, self.height_pad) | |
x = F.pad(x, causal_padding_2d, mode="constant", value=0) | |
else: | |
raise ValueError("Invalid pad mode") | |
return self.conv(x) | |
def Normalize3D(in_channels): # same for 3D and 2D | |
return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) | |
class Upsample3D(nn.Module): | |
def __init__(self, in_channels, with_conv, compress_time=False): | |
super().__init__() | |
self.with_conv = with_conv | |
if self.with_conv: | |
self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) | |
self.compress_time = compress_time | |
def forward(self, x): | |
if self.compress_time: | |
if x.shape[2] > 1: | |
# split first frame | |
x_first, x_rest = x[:, :, 0], x[:, :, 1:] | |
x_first = torch.nn.functional.interpolate(x_first, scale_factor=2.0, mode="nearest") | |
x_rest = torch.nn.functional.interpolate(x_rest, scale_factor=2.0, mode="nearest") | |
x = torch.cat([x_first[:, :, None, :, :], x_rest], dim=2) | |
else: | |
x = x.squeeze(2) | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
x = x[:, :, None, :, :] | |
else: | |
# only interpolate 2D | |
t = x.shape[2] | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=t) | |
if self.with_conv: | |
t = x.shape[2] | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
x = self.conv(x) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=t) | |
return x | |
class DownSample3D(nn.Module): | |
def __init__(self, in_channels, with_conv, compress_time=False, out_channels=None): | |
super().__init__() | |
self.with_conv = with_conv | |
if out_channels is None: | |
out_channels = in_channels | |
if self.with_conv: | |
# no asymmetric padding in torch conv, must do it ourselves | |
self.conv = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=0) | |
self.compress_time = compress_time | |
def forward(self, x): | |
if self.compress_time: | |
h, w = x.shape[-2:] | |
x = rearrange(x, "b c t h w -> (b h w) c t") | |
# split first frame | |
x_first, x_rest = x[..., 0], x[..., 1:] | |
if x_rest.shape[-1] > 0: | |
x_rest = torch.nn.functional.avg_pool1d(x_rest, kernel_size=2, stride=2) | |
x = torch.cat([x_first[..., None], x_rest], dim=-1) | |
x = rearrange(x, "(b h w) c t -> b c t h w", h=h, w=w) | |
if self.with_conv: | |
pad = (0, 1, 0, 1) | |
x = torch.nn.functional.pad(x, pad, mode="constant", value=0) | |
t = x.shape[2] | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
x = self.conv(x) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=t) | |
else: | |
t = x.shape[2] | |
x = rearrange(x, "b c t h w -> (b t) c h w") | |
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) | |
x = rearrange(x, "(b t) c h w -> b c t h w", t=t) | |
return x | |
class ResnetBlock3D(nn.Module): | |
def __init__( | |
self, *, in_channels, out_channels=None, conv_shortcut=False, dropout, temb_channels=512, pad_mode="constant" | |
): | |
super().__init__() | |
self.in_channels = in_channels | |
out_channels = in_channels if out_channels is None else out_channels | |
self.out_channels = out_channels | |
self.use_conv_shortcut = conv_shortcut | |
self.norm1 = Normalize3D(in_channels) | |
# self.conv1 = torch.nn.Conv3d(in_channels, | |
# out_channels, | |
# kernel_size=3, | |
# stride=1, | |
# padding=1) | |
self.conv1 = CausalConv3d(in_channels, out_channels, kernel_size=3, pad_mode=pad_mode) | |
if temb_channels > 0: | |
self.temb_proj = torch.nn.Linear(temb_channels, out_channels) | |
self.norm2 = Normalize3D(out_channels) | |
self.dropout = torch.nn.Dropout(dropout) | |
# self.conv2 = torch.nn.Conv3d(out_channels, | |
# out_channels, | |
# kernel_size=3, | |
# stride=1, | |
# padding=1) | |
self.conv2 = CausalConv3d(out_channels, out_channels, kernel_size=3, pad_mode=pad_mode) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
# self.conv_shortcut = torch.nn.Conv3d(in_channels, | |
# out_channels, | |
# kernel_size=3, | |
# stride=1, | |
# padding=1) | |
self.conv_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=3, pad_mode=pad_mode) | |
else: | |
self.nin_shortcut = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) | |
# self.nin_shortcut = CausalConv3d(in_channels, out_channels, kernel_size=1, pad_mode=pad_mode) | |
def forward(self, x, temb): | |
h = x | |
h = self.norm1(h) | |
h = nonlinearity(h) | |
h = self.conv1(h) | |
if temb is not None: | |
h = h + self.temb_proj(nonlinearity(temb))[:, :, None, None, None] | |
h = self.norm2(h) | |
h = nonlinearity(h) | |
h = self.dropout(h) | |
h = self.conv2(h) | |
if self.in_channels != self.out_channels: | |
if self.use_conv_shortcut: | |
x = self.conv_shortcut(x) | |
else: | |
x = self.nin_shortcut(x) | |
return x + h | |
class AttnBlock2D(nn.Module): | |
def __init__(self, in_channels): | |
super().__init__() | |
self.in_channels = in_channels | |
self.norm = Normalize3D(in_channels) | |
self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) | |
def forward(self, x): | |
h_ = x | |
h_ = self.norm(h_) | |
t = h_.shape[2] | |
h_ = rearrange(h_, "b c t h w -> (b t) c h w") | |
q = self.q(h_) | |
k = self.k(h_) | |
v = self.v(h_) | |
# compute attention | |
b, c, h, w = q.shape | |
q = q.reshape(b, c, h * w) | |
q = q.permute(0, 2, 1) # b,hw,c | |
k = k.reshape(b, c, h * w) # b,c,hw | |
# # original version, nan in fp16 | |
# w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
# w_ = w_ * (int(c)**(-0.5)) | |
# # implement c**-0.5 on q | |
q = q * (int(c) ** (-0.5)) | |
w_ = torch.bmm(q, k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] | |
w_ = torch.nn.functional.softmax(w_, dim=2) | |
# attend to values | |
v = v.reshape(b, c, h * w) | |
w_ = w_.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) | |
h_ = torch.bmm(v, w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] | |
h_ = h_.reshape(b, c, h, w) | |
h_ = self.proj_out(h_) | |
h_ = rearrange(h_, "(b t) c h w -> b c t h w", t=t) | |
return x + h_ | |
class Encoder3D(nn.Module): | |
def __init__( | |
self, | |
*, | |
ch, | |
out_ch, | |
ch_mult=(1, 2, 4, 8), | |
num_res_blocks, | |
attn_resolutions, | |
dropout=0.0, | |
resamp_with_conv=True, | |
in_channels, | |
resolution, | |
z_channels, | |
double_z=True, | |
pad_mode="first", | |
temporal_compress_times=4, | |
**ignore_kwargs, | |
): | |
super().__init__() | |
self.ch = ch | |
self.temb_ch = 0 | |
self.num_resolutions = len(ch_mult) | |
self.num_res_blocks = num_res_blocks | |
self.resolution = resolution | |
self.in_channels = in_channels | |
# log2 of temporal_compress_times | |
self.temporal_compress_level = int(np.log2(temporal_compress_times)) | |
# downsampling | |
# self.conv_in = torch.nn.Conv3d(in_channels, | |
# self.ch, | |
# kernel_size=3, | |
# stride=1, | |
# padding=1) | |
self.conv_in = CausalConv3d(in_channels, self.ch, kernel_size=3, pad_mode=pad_mode) | |
curr_res = resolution | |
in_ch_mult = (1,) + tuple(ch_mult) | |
self.down = nn.ModuleList() | |
for i_level in range(self.num_resolutions): | |
block = nn.ModuleList() | |
attn = nn.ModuleList() | |
block_in = ch * in_ch_mult[i_level] | |
block_out = ch * ch_mult[i_level] | |
for i_block in range(self.num_res_blocks): | |
block.append( | |
ResnetBlock3D( | |
in_channels=block_in, | |
out_channels=block_out, | |
temb_channels=self.temb_ch, | |
dropout=dropout, | |
pad_mode=pad_mode, | |
) | |
) | |
block_in = block_out | |
if curr_res in attn_resolutions: | |
attn.append(AttnBlock2D(block_in)) | |
down = nn.Module() | |
down.block = block | |
down.attn = attn | |
if i_level != self.num_resolutions - 1: | |
if i_level < self.temporal_compress_level: | |
down.downsample = DownSample3D(block_in, resamp_with_conv, compress_time=True) | |
else: | |
down.downsample = DownSample3D(block_in, resamp_with_conv, compress_time=False) | |
curr_res = curr_res // 2 | |
self.down.append(down) | |
# middle | |
self.mid = nn.Module() | |
self.mid.block_1 = ResnetBlock3D( | |
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, pad_mode=pad_mode | |
) | |
# remove attention block | |
# self.mid.attn_1 = AttnBlock2D(block_in) | |
self.mid.block_2 = ResnetBlock3D( | |
in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout, pad_mode=pad_mode | |
) | |
# end | |
self.norm_out = Normalize3D(block_in) | |
# self.conv_out = torch.nn.Conv3d(block_in, | |
# 2*z_channels if double_z else z_channels, | |
# kernel_size=3, | |
# stride=1, | |
# padding=1) | |
self.conv_out = CausalConv3d( | |
block_in, 2 * z_channels if double_z else z_channels, kernel_size=3, pad_mode=pad_mode | |
) | |
def forward(self, x, use_cp=False): | |
# assert x.shape[2] == x.shape[3] == self.resolution, "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) | |
# timestep embedding | |
temb = None | |
# downsampling | |
hs = [self.conv_in(x)] | |
for i_level in range(self.num_resolutions): | |
for i_block in range(self.num_res_blocks): | |
h = self.down[i_level].block[i_block](hs[-1], temb) | |
if len(self.down[i_level].attn) > 0: | |
h = self.down[i_level].attn[i_block](h) | |
hs.append(h) | |
if i_level != self.num_resolutions - 1: | |
hs.append(self.down[i_level].downsample(hs[-1])) | |
# middle | |
h = hs[-1] | |
h = self.mid.block_1(h, temb) | |
# h = self.mid.attn_1(h) | |
h = self.mid.block_2(h, temb) | |
# end | |
h = self.norm_out(h) | |
h = nonlinearity(h) | |
h = self.conv_out(h) | |
return h | |