seawolf2357's picture
Deploy from GitHub repository
3b58dfc verified
import numpy as np
import torch
import cv2
from torchvision.transforms import Resize, InterpolationMode, ToTensor, Compose, CenterCrop
from einops import rearrange
import glob
from diffusers.utils import USE_PEFT_BACKEND
from diffusers.utils import load_image
from natsort import natsorted
def read_mask(mask_dir):
transform = Compose([
Resize((512, 512), interpolation=InterpolationMode.BILINEAR, antialias=True),
# CenterCrop((512, 512)),
ToTensor()])
mask_paths = glob.glob(mask_dir + '/*.png')
mask_paths = natsorted(mask_paths)
mask_list = []
for mask_path in mask_paths:
mask = load_image(mask_path)
mask_torch = transform(mask).bool().unsqueeze(0) # torch.Size([1, 3, 512, 512]) -1~1
mask_list.append(mask_torch)
return mask_list
def read_rgb(rgb_dir):
transform = Compose([
Resize((512, 512), interpolation=InterpolationMode.BILINEAR, antialias=True),
# CenterCrop((512, 512)),
ToTensor()])
rgb_paths = sorted(glob.glob(rgb_dir + '/*.jpg'))
rgb_list = []
rgb_frame = []
for rgb_path in rgb_paths:
rgb = load_image(rgb_path);
width, height = rgb.size
file_name = rgb_path.split('/')[-1]
frame_number = int(file_name.split('_')[1].split('.')[0].lstrip('0') or '0')
rgb_frame.append(frame_number)
rgb_torch = transform(rgb).unsqueeze(0) # torch.Size([1, 3, 512, 512])
rgb_list.append(rgb_torch)
return rgb_list, (width, height), rgb_frame
def read_depth2disparity(depth_dir):
depth_paths = sorted(glob.glob(depth_dir + '/*.npy'))
disparity_list = []
for depth_path in depth_paths:
depth = np.load(depth_path)
depth = cv2.resize(depth, (512, 512)).reshape((512, 512, 1)) # [512,512,1]
# depth = CenterCrop((512, 512))(torch.from_numpy(depth))[..., None].numpy() # [512,512,1]
disparity = 1 / (depth + 1e-5)
disparity_map = disparity / np.max(disparity) # 0.00233~1
# disparity_map = disparity_map.astype(np.uint8)[:,:,0]
disparity_map = np.concatenate([disparity_map, disparity_map, disparity_map], axis=2)
disparity_list.append(torch.from_numpy(disparity_map[None]).permute(0, 3, 1, 2).float()) # [1,512,512,3]
return disparity_list
def compute_attn(attn, query, key, value, video_length, ref_frame_index, attention_mask):
key_ref_cross = rearrange(key, "(b f) d c -> b f d c", f=video_length)
key_ref_cross = key_ref_cross[:, ref_frame_index]
key_ref_cross = rearrange(key_ref_cross, "b f d c -> (b f) d c")
value_ref_cross = rearrange(value, "(b f) d c -> b f d c", f=video_length)
value_ref_cross = value_ref_cross[:, ref_frame_index]
value_ref_cross = rearrange(value_ref_cross, "b f d c -> (b f) d c")
key_ref_cross = attn.head_to_batch_dim(key_ref_cross)
value_ref_cross = attn.head_to_batch_dim(value_ref_cross)
attention_probs = attn.get_attention_scores(query, key_ref_cross, attention_mask)
hidden_states_ref_cross = torch.bmm(attention_probs, value_ref_cross)
return hidden_states_ref_cross
class CrossViewAttnProcessor:
def __init__(self, self_attn_coeff, unet_chunk_size=2):
self.unet_chunk_size = unet_chunk_size
self.self_attn_coeff = self_attn_coeff
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None,
temb=None,
scale=1.0, ):
residual = hidden_states
args = () if USE_PEFT_BACKEND else (scale,)
if attn.spatial_norm is not None:
hidden_states = attn.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if attn.group_norm is not None:
hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
query = attn.to_q(hidden_states, *args)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.norm_cross:
encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states, *args)
value = attn.to_v(encoder_hidden_states, *args)
query = attn.head_to_batch_dim(query)
# Sparse Attention
if not is_cross_attention:
################## Perform self attention
key_self = attn.head_to_batch_dim(key)
value_self = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key_self, attention_mask)
hidden_states_self = torch.bmm(attention_probs, value_self)
#######################################
video_length = key.size()[0] // self.unet_chunk_size
ref0_frame_index = [0] * video_length
ref1_frame_index = [1] * video_length
ref2_frame_index = [2] * video_length
ref3_frame_index = [3] * video_length
hidden_states_ref0 = compute_attn(attn, query, key, value, video_length, ref0_frame_index, attention_mask)
hidden_states_ref1 = compute_attn(attn, query, key, value, video_length, ref1_frame_index, attention_mask)
hidden_states_ref2 = compute_attn(attn, query, key, value, video_length, ref2_frame_index, attention_mask)
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
key = key[:, ref3_frame_index]
key = rearrange(key, "b f d c -> (b f) d c")
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
value = value[:, ref3_frame_index]
value = rearrange(value, "b f d c -> (b f) d c")
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states_ref3 = torch.bmm(attention_probs, value)
hidden_states = self.self_attn_coeff * hidden_states_self + (1 - self.self_attn_coeff) * torch.mean(
torch.stack([hidden_states_ref0, hidden_states_ref1, hidden_states_ref2, hidden_states_ref3]),
dim=0) if not is_cross_attention else hidden_states_ref3
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states, *args)
# dropout
hidden_states = attn.to_out[1](hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if attn.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / attn.rescale_output_factor
return hidden_states