import gradio as gr import numpy as np import torch from datasets import load_dataset import librosa # librosa 라이브러리를 임포트합니다. from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" # Load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) # Load text-to-speech checkpoint and speaker embeddings processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) def translate(audio): audio_length = librosa.get_duration(filename=audio) if audio_length > 30: # 오디오를 30초로 자르기 (이 부분은 구현에 따라 달라질 수 있습니다.) audio = audio[:int(30 * 16000)] # 가정: 오디오 샘플링 레이트가 16000Hz outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "return_timestamps": False}) return outputs["text"] def synthesise(text): inputs = processor(text=text, return_tensors="pt") max_length = 600 # 모델이 처리할 수 있는 최대 길이 if inputs["input_ids"].size(1) > max_length: inputs["input_ids"] = inputs["input_ids"][:, :max_length] speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() def speech_to_speech_translation(audio): translated_text = translate(audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech css = """ footer { visibility: hidden; } """ demo = gr.Blocks(theme="Nymbo/Nymbo_Theme", css=css) mic_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["microphone"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), ) file_translate = gr.Interface( fn=speech_to_speech_translation, inputs=gr.Audio(sources=["upload"], type="filepath"), outputs=gr.Audio(label="Generated Speech", type="numpy"), examples=[["./example.wav"]], ) with demo: gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"]) demo.launch()