import specklepy from specklepy.api.client import SpeckleClient from specklepy.api.credentials import get_default_account, get_local_accounts from specklepy.transports.server import ServerTransport from specklepy.api import operations from specklepy.objects.geometry import Polyline, Point, Mesh import json import pandas as pd import numpy as n from specklepy.api.wrapper import StreamWrapper import requests from datetime import datetime import copy def get_dataframe(objects_raw, return_original_df=False): """ Creates a pandas DataFrame from a list of raw Speckle objects. Args: objects_raw (list): List of raw Speckle objects. return_original_df (bool, optional): If True, the function also returns the original DataFrame before any conversion to numeric. Defaults to False. Returns: pd.DataFrame or tuple: If return_original_df is False, returns a DataFrame where all numeric columns have been converted to their respective types, and non-numeric columns are left unchanged. If return_original_df is True, returns a tuple where the first item is the converted DataFrame, and the second item is the original DataFrame before conversion. This function iterates over the raw Speckle objects, creating a dictionary for each object that excludes the '@Geometry' attribute. These dictionaries are then used to create a pandas DataFrame. The function attempts to convert each column to a numeric type if possible, and leaves it unchanged if not. Non-convertible values in numeric columns are replaced with their original values. """ # dataFrame df_data = [] # Iterate over speckle objects for obj_raw in objects_raw: obj = obj_raw.__dict__ df_obj = {k: v for k, v in obj.items() if k != '@Geometry'} df_data.append(df_obj) # Create DataFrame and GeoDataFrame df = pd.DataFrame(df_data) # Convert columns to float or int if possible, preserving non-convertible values <- df_copy = df.copy() for col in df.columns: df[col] = pd.to_numeric(df[col], errors='coerce') df[col].fillna(df_copy[col], inplace=True) if return_original_df: return df, df_copy else: return df def aggregate_data_optimized(df_a, df_b, uuid_col_name, ref_col_name, exclude_columns): # Ensure the uuid_col_name is included for the merging process columns_to_use = [col for col in df_a.columns if col not in exclude_columns or col == uuid_col_name] df_a_filtered = df_a[columns_to_use] # Perform the merge without adding suffixes, as we intend to overwrite existing columns in df_b df_merged = pd.merge(df_b, df_a_filtered, how='left', left_on=ref_col_name, right_on=uuid_col_name, suffixes=(None, '_y')) # Initialize a dictionary for logging log_dict = { 'info': [], 'warning': [], 'summary': {} } # Logging matched and unmatched counts matched_count = df_merged[ref_col_name].notnull().sum() unmatched_count = df_b.shape[0] - matched_count log_dict['summary'] = { 'matched_count': matched_count, 'unmatched_count': unmatched_count, 'total_rows_processed': df_b.shape[0] } log_dict['info'].append("Data aggregation completed successfully.") # Explicitly overwrite columns in df_b with those from df_a, based on the merge for col in columns_to_use: if col not in exclude_columns and col != uuid_col_name and f'{col}_y' in df_merged: df_merged[col] = df_merged.pop(f'{col}_y') # Drop any remaining '_y' columns that were not explicitly handled df_merged = df_merged.loc[:, ~df_merged.columns.str.endswith('_y')] # Additionally, if the uuid_col_name is not part of the original df_b columns and is only used for matching, it should be removed if uuid_col_name not in df_b.columns: df_merged.drop(columns=[uuid_col_name], inplace=True, errors='ignore') return df_merged, log_dict def updateStreamAnalysisFast(client, new_data, stream_id, branch_name, geometryGroupPath=None, match_by_id="", return_original=False, comm_message=""): if geometryGroupPath is None: geometryGroupPath = ["@Speckle", "Geometry"] branch = client.branch.get(stream_id, branch_name, 2) latest_commit = branch.commits.items[0] commit = client.commit.get(stream_id, latest_commit.id) transport = ServerTransport(client=client, stream_id=stream_id) res = operations.receive(commit.referencedObject, transport) objects_raw = res[geometryGroupPath[0]][geometryGroupPath[1]] # Pre-create a mapping from IDs to objects for faster lookup id_to_object_map = {obj[match_by_id]: obj for obj in objects_raw} if match_by_id else {i: obj for i, obj in enumerate(objects_raw)} # Pre-process DataFrame if match_by_id is provided if match_by_id: new_data.set_index(match_by_id, inplace=True) # Update objects in a more efficient way using .items() for local_id, updates in new_data.iterrows(): target_object = id_to_object_map.get(str(local_id)) if target_object: for col_name, value in updates.items(): target_object[col_name] = value # Send updated objects back to Speckle new_objects_raw_speckle_id = operations.send(base=res, transports=[transport]) commit_id = client.commit.create(stream_id=stream_id, branch_name=branch_name, object_id=new_objects_raw_speckle_id, message=comm_message + "#+SourceCommit: "+latest_commit.id) print("commit created") if return_original: return objects_raw # as back-up return commit_id def getSpeckleStream(stream_id, branch_name, client, commit_id="" ): """ Retrieves data from a specific branch of a speckle stream. Args: stream_id (str): The ID of the speckle stream. branch_name (str): The name of the branch within the speckle stream. client (specklepy.api.client.Client, optional): A speckle client. Defaults to a global `client`. commit_id (str): id of a commit, if nothing is specified, the latest commit will be fetched Returns: dict: The speckle stream data received from the specified branch. This function retrieves the last commit from a specific branch of a speckle stream. It uses the provided speckle client to get the branch and commit information, and then retrieves the speckle stream data associated with the last commit. It prints out the branch details and the creation dates of the last three commits for debugging purposes. """ print("updated A") # set stream and branch try: branch = client.branch.get(stream_id, branch_name, 1) print(branch) except: branch = client.branch.get(stream_id, branch_name, 1) print(branch) print("branch info:", branch) #[print(ite.createdAt) for ite in branch.commits.items] if commit_id == "": latest_commit = branch.commits.items[0] choosen_commit_id = latest_commit.id commit = client.commit.get(stream_id, choosen_commit_id) print("latest commit ", branch.commits.items[0].createdAt, " was choosen") elif type(commit_id) == type("s"): # string, commit uuid choosen_commit_id = commit_id commit = client.commit.get(stream_id, choosen_commit_id) print("provided commit ", choosen_commit_id, " was choosen") elif type(commit_id) == type(1): #int latest_commit = branch.commits.items[commit_id] choosen_commit_id = latest_commit.id commit = client.commit.get(stream_id, choosen_commit_id) print(commit) print(commit.referencedObject) # get transport transport = ServerTransport(client=client, stream_id=stream_id) #speckle stream res = operations.receive(commit.referencedObject, transport) return res