Spaces:
Sleeping
Sleeping
File size: 14,810 Bytes
a529fc1 3c333ab a529fc1 3604d45 cba0a61 3c333ab cba0a61 a529fc1 cba0a61 a529fc1 cba0a61 a529fc1 3604d45 3c333ab cba0a61 3c333ab 3604d45 3c333ab cba0a61 3c333ab cba0a61 a529fc1 3c333ab a529fc1 cba0a61 3c333ab cba0a61 3c333ab cba0a61 4dd095d 3c333ab 4dd095d 3c333ab cba0a61 3c333ab cba0a61 3c333ab cba0a61 3c333ab cba0a61 3c333ab cba0a61 a529fc1 cba0a61 a529fc1 3604d45 a529fc1 cba0a61 a529fc1 cba0a61 a529fc1 3c333ab a529fc1 cba0a61 3c333ab a529fc1 3c333ab |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 |
import gradio as gr # type: ignore
import os # type: ignore
import numpy as np #type: ignore
from dotenv import load_dotenv
from transformers import AutoTokenizer # type: ignore
from sentence_transformers import SentenceTransformer # type: ignore
from huggingface_hub import InferenceClient, login, HfApi, whoami # type: ignore
from gradio.components import ChatMessage # type: ignore
from typing import List, TypedDict
import json
from datetime import datetime
import time
import uuid
import tempfile
import shutil
import hashlib # Added for password hashing
class Message(TypedDict):
role: str
content: str
if os.path.exists('.env'):
load_dotenv()
hf_token = os.getenv("HF_TOKEN")
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("https://xk54gqdcp97za8n6.us-east-1.aws.endpoints.huggingface.cloud")
model = SentenceTransformer('all-MiniLM-L6-v2') # You can choose other models depending on your needs
MAX_HISTORY_LENGTH = 5000 # Keep the last 10 exchanges
MAX_TOKENS = 128000 # Token limit for your model (check your model's max tokens)
EMBEDDING_DIM = 384 # Dimension of embeddings, specific to the model you use (e.g., for 'all-MiniLM-L6-v2', it's 384)
login(token=hf_token)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-Nemo-Base-2407") # Ersätt med din egen modell om det behövs
def load_persona():
try:
with open("profile.md", "r", encoding="utf-8") as profile_file:
profile_content = profile_file.read()
with open("instructions.md", "r", encoding="utf-8") as instructions_file:
instructions_content = instructions_file.read()
# Combine profile and instructions with blank lines in between
content = profile_content + "\n\n" + instructions_content
return content
except FileNotFoundError as e:
print(f"Warning: File not found: {e.filename}. Using default persona.")
return """Act and roleplay as a literal horse."""
# Preloaded conversation state (initial history)
system_message: List[Message] = [Message(role="system", content=load_persona())]
# Add this after the existing imports
CHAT_HISTORY_DIR = "/data/chat_history"
os.makedirs(CHAT_HISTORY_DIR, exist_ok=True)
# Generate a unique session ID when the app starts
SESSION_ID = f"chat_session_{datetime.now().strftime('%Y%m%d_%H%M%S')}_{uuid.uuid4().hex[:8]}"
# Create a temporary directory for file operations
TEMP_DIR = tempfile.mkdtemp()
# Global authentication state
is_user_authenticated = False
# Hashed password - this is a hash of "password123" using SHA-256
HASHED_PASSWORD = "f75778f7425be4db0369d09af37a6c2b9a83dea0e53e7bd57412e4b060e607f7"
def get_session_file():
"""Get the current session's chat history file path."""
return os.path.join(CHAT_HISTORY_DIR, f"{SESSION_ID}.json")
def save_chat_history(history: List[Message]):
"""Save chat history to the session file."""
filename = get_session_file()
# Convert history to a serializable format
serializable_history = [
{"role": msg["role"], "content": msg["content"]}
for msg in history
]
# Create a backup of the previous file if it exists
if os.path.exists(filename):
backup_filename = f"{filename}.bak"
os.replace(filename, backup_filename)
try:
with open(filename, "w", encoding="utf-8") as f:
json.dump(serializable_history, f, ensure_ascii=False, indent=2)
except Exception as e:
# If saving fails, restore from backup
if os.path.exists(f"{filename}.bak"):
os.replace(f"{filename}.bak", filename)
raise e
def load_chat_history(session_id: str) -> List[Message]:
"""Load chat history from a file."""
filename = os.path.join(CHAT_HISTORY_DIR, f"chat_history_{session_id}.json")
if os.path.exists(filename):
with open(filename, "r", encoding="utf-8") as f:
history = json.load(f)
return [Message(**msg) for msg in history]
return []
# Add these constants at the top with your other constants
DATA_FOLDER = "/data/chat_history"
HF_TOKEN = os.getenv("HF_TOKEN")
def is_authenticated():
"""Check if the user is authenticated."""
# Use the global authentication state
return is_user_authenticated
def list_chat_history_files():
"""List all chat history files in the data folder."""
if not is_authenticated():
return []
try:
files = [f for f in os.listdir(DATA_FOLDER) if f.endswith('.json')]
# Sort files by modification time, newest first
files.sort(key=lambda x: os.path.getmtime(os.path.join(DATA_FOLDER, x)), reverse=True)
return files
except Exception:
return []
def download_chat_history(filename):
"""Download a specific chat history file."""
if not is_authenticated():
return None
if not filename: # Handle case when no file is selected
return None
source_path = os.path.join(DATA_FOLDER, filename)
if os.path.exists(source_path):
# Copy the file to temp directory first
temp_path = os.path.join(TEMP_DIR, filename)
shutil.copy2(source_path, temp_path)
return temp_path
return None
def verify_password(password):
"""Verify password and update authentication state."""
global is_user_authenticated
# Hash the provided password using SHA-256
hashed_input = hashlib.sha256(password.encode()).hexdigest()
# Compare with the stored hash
if hashed_input == HASHED_PASSWORD:
is_user_authenticated = True
return "**Status:** ✅ Authenticated"
else:
is_user_authenticated = False
return "**Status:** ❌ Authentication failed"
def logout():
"""Log the user out by resetting the authentication state."""
global is_user_authenticated
is_user_authenticated = False
return "**Status:** ❌ Not authenticated", gr.update(visible=False)
# Create a Gradio interface
with gr.Blocks() as iface:
# Your existing chat interface components
chatbot_output = gr.Chatbot(label="Chat History", type="messages")
chatbot_input = gr.Textbox(placeholder="Type your message here...", label="Your Message")
def update_file_list():
"""Update the file list and return the updated dropdown."""
return gr.update(choices=list_chat_history_files())
# Authentication status indicator
# Create a lock icon button that expands into a password field
with gr.Group() as auth_group:
auth_lock_btn = gr.Button("🔒", elem_id="auth_lock_btn", scale=0)
with gr.Group("Enter Password", visible=False, elem_id="auth_accordion") as auth_accordion:
auth_password = gr.Textbox(
type="password",
placeholder="Enter your password",
label="Password",
elem_id="auth_password",
visible=not is_authenticated()
)
auth_submit = gr.Button("Login", elem_id="auth_submit", visible=not is_authenticated())
auth_status = gr.Markdown(
value="**Status:** " + ("✅ Authenticated" if is_authenticated() else "❌ Not authenticated"),
elem_id="auth_status"
)
auth_logout = gr.Button("Logout", elem_id="auth_logout", visible=is_authenticated())
# Toggle visibility of password field when lock button is clicked
auth_lock_btn.click(
fn=lambda: gr.update(visible=True),
outputs=[auth_accordion]
)
# Add download section (only visible when authenticated)
with gr.Group(visible=is_authenticated()) as download_section:
gr.Markdown("### Download Chat History")
file_list = gr.Dropdown(
choices=list_chat_history_files(),
label="Select a chat history file",
interactive=True,
allow_custom_value=False
)
download_button = gr.Button("Download Chat History")
download_output = gr.File(label="Downloaded file")
# Update file list when refresh button is clicked
refresh_button = gr.Button("Refresh File List")
refresh_button.click(
fn=update_file_list,
outputs=file_list
)
# Handle password submission
auth_submit.click(
fn=verify_password,
inputs=[auth_password],
outputs=[auth_status]
)
# Clear password field after submission
auth_submit.click(
fn=lambda: "",
outputs=[auth_password]
)
# Update download section visibility based on authentication status
auth_submit.click(
fn=lambda: gr.update(visible=is_authenticated()),
outputs=[download_section]
)
# Handle logout button
auth_logout.click(
fn=logout,
outputs=[auth_status, download_section]
)
# Update logout button visibility based on authentication status
auth_submit.click(
fn=lambda: gr.update(visible=is_authenticated()),
outputs=[auth_logout]
)
auth_submit.click(
fn=update_file_list,
outputs=file_list
)
# Update file list when dropdown selection changes
file_list.select(
fn=update_file_list,
outputs=file_list
)
def generate_embeddings(messages: List[str]):
"""Generate embeddings for the list of messages."""
embeddings = model.encode(messages, show_progress_bar=False)
return embeddings
def summarize_conversation(conversation: List[Message]):
"""Summarize conversation history into a single embedding."""
# Extract the text content from the conversation
messages = [msg['content'] for msg in conversation]
# Generate embeddings for the entire conversation
conversation_embeddings = generate_embeddings(messages)
# Return the average of all embeddings (this is a simple approach for compacting)
#compact_representation = np.mean(conversation_embeddings, axis=0)
#return compact_representation
return conversation_embeddings
def count_tokens(messages: List[str]) -> int:
"""Beräkna det totala antalet tokens i konversationen."""
return sum(len(tokenizer.encode(message)) for message in messages)
def get_chat_completion(system_message, history, retry_attempt=0, max_retries=3):
"""Get chat completion from the model with retry logic for 503 errors."""
try:
# Common parameters
params = {
"model": "openerotica/writing-roleplay-20k-context-nemo-12b-v1.0-gguf",
"messages": [*system_message, *history],
"stream_options": {"enabled": True},
"stream": True,
"frequency_penalty": 1.0,
"max_tokens": 2048,
"n": 1,
"presence_penalty": 1.0,
"temperature": 1.0,
"top_p": 1.0
}
return client.chat_completion(**params)
except Exception as e:
if hasattr(e.response, 'status_code') and "503" in str(e.response.status_code):
if retry_attempt < max_retries:
message = f"Agent is asleep, waking up... Trying again in 3 minutes... (Attempt {retry_attempt + 1}/{max_retries})"
gr.Warning(message, duration=180)
time.sleep(180)
gr.Info("Retrying...")
return get_chat_completion(system_message, history, retry_attempt + 1, max_retries)
else:
gr.Error(f"Max retries ({max_retries}) reached. Giving up.")
return None
else:
gr.Error(f"Error getting chat completion: {e}")
if retry_attempt < max_retries:
gr.Warning(f"Retrying after error... (Attempt {retry_attempt + 1}/{max_retries})", duration=10)
time.sleep(10) # Wait a bit before retrying after an error
return get_chat_completion(system_message, history, retry_attempt + 1, max_retries)
return None
def user(user_message, history: List[Message]):
new_history = history + [Message(role="user", content=user_message)]
save_chat_history(new_history)
return "", new_history
def bot(history: list):
#compact_history = summarize_conversation(preloaded_history)
#compact_history = preloaded_history[-MAX_HISTORY_LENGTH:]
#conversation = [msg["content"] for msg in compact_history]
session_conversation = [msg["content"] for msg in history]
system_context = [msg["content"] for msg in system_message]
total_tokens = count_tokens(session_conversation) + count_tokens(system_context)
#total_tokens = count_tokens(conversation) + session_tokens
print(f"Total tokens: {total_tokens}")
# Kolla om tokenräkningen överskrider gränsen (igen)
if total_tokens > MAX_TOKENS:
print("Token limit exceeded. Truncating history.")
while (count_tokens([msg["content"] for msg in history]) + total_tokens) > MAX_TOKENS:
history.pop(0) # Ta bort det äldsta meddelandet
response = get_chat_completion(system_message, history)
if response:
# Initialize bot_message
bot_message = ""
history.append(Message(role="assistant", content=""))
for chunk in response:
# Debugging: Log the received chunk
if 'choices' in chunk and chunk['choices']:
choice = chunk['choices'][0]
if choice.get('delta') and choice['delta'].get('content'):
# Append the new content to bot_message
bot_message += choice['delta']['content']
history[-1]['content'] = bot_message
yield history
save_chat_history(history)
# Add download functionality
download_button.click(
fn=download_chat_history,
inputs=file_list,
outputs=download_output
)
chatbot_input.submit(user, [chatbot_input, chatbot_output], [chatbot_input, chatbot_output], queue=False).then(
bot, chatbot_output, chatbot_output
)
if __name__ == "__main__":
iface.launch(
allowed_paths=[DATA_FOLDER, TEMP_DIR] # Add both the data folder and temp directory to allowed paths
) |