Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
import numpy as np | |
from PIL import Image | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import open3d as o3d | |
from pathlib import Path | |
# تحميل النموذج المدرب مسبقًا لتقدير العمق | |
depth_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
depth_model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
def estimate_depth_and_generate_3d(image_file, voxel_scale): | |
voxel_scale = max(voxel_scale / 500.0, 0.0001) | |
image_path = Path(image_file) | |
image_raw = Image.open(image_path) | |
resized = image_raw.resize((800, int(800 * image_raw.height / image_raw.width)), Image.Resampling.LANCZOS) | |
inputs = depth_extractor(resized, return_tensors="pt") | |
with torch.no_grad(): | |
result = depth_model(**inputs) | |
depth_tensor = result.predicted_depth | |
depth_resized = torch.nn.functional.interpolate( | |
depth_tensor.unsqueeze(1), | |
size=resized.size[::-1], | |
mode="bicubic", | |
align_corners=False | |
).squeeze().cpu().numpy() | |
depth_image = (depth_resized * 255 / np.max(depth_resized)).astype(np.uint8) | |
try: | |
gltf_file = create_voxel_model(np.array(resized), depth_image, image_path, voxel_scale) | |
return [Image.fromarray(depth_image), gltf_file, gltf_file] | |
except Exception as err: | |
print("3D creation error:", err) | |
raise gr.Error("Failed to generate 3D model.") | |
def create_voxel_model(rgb_data, depth_data, image_path, voxel_scale): | |
depth_o3d = o3d.geometry.Image(depth_data) | |
color_o3d = o3d.geometry.Image(rgb_data) | |
rgbd = o3d.geometry.RGBDImage.create_from_color_and_depth(color_o3d, depth_o3d, convert_rgb_to_intensity=False) | |
h, w = depth_data.shape | |
intrinsics = o3d.camera.PinholeCameraIntrinsic() | |
intrinsics.set_intrinsics(w, h, 500, 500, w / 2, h / 2) | |
pcd = o3d.geometry.PointCloud.create_from_rgbd_image(rgbd, intrinsics) | |
pcd.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30)) | |
pcd.orient_normals_towards_camera_location(np.array([0, 0, 1000])) | |
pcd.transform([[1, 0, 0, 0], [0, -1, 0, 0], [0, 0, -1, 0], [0, 0, 0, 1]]) | |
voxel_size = round(max(pcd.get_max_bound() - pcd.get_min_bound()) * voxel_scale, 10) | |
vox_grid = o3d.geometry.VoxelGrid.create_from_point_cloud(pcd, voxel_size=voxel_size) | |
mesh = o3d.geometry.TriangleMesh() | |
for voxel in vox_grid.get_voxels(): | |
cube = o3d.geometry.TriangleMesh.create_box(1, 1, 1) | |
cube.paint_uniform_color(voxel.color) | |
cube.translate(voxel.grid_index, relative=False) | |
mesh += cube | |
output_file = f"./{image_path.stem}_3d.gltf" | |
o3d.io.write_triangle_mesh(output_file, mesh, write_triangle_uvs=True) | |
return output_file | |
# واجهة الاستخدام | |
gr.Interface( | |
fn=estimate_depth_and_generate_3d, | |
inputs=[ | |
gr.Image(type="filepath", label="Upload Image (PNG or JPG)"), | |
gr.Slider(5, 100, value=10, step=1, label="Voxel Density") | |
], | |
outputs=[ | |
gr.Image(label="Estimated Depth Map"), | |
gr.Model3D(label="3D Voxel Mesh"), | |
gr.File(label="Download GLTF") | |
], | |
title="3D Reconstruction from Depth Estimation", | |
description="Upload an image to estimate its depth and reconstruct a voxel-based 3D mesh.", | |
allow_flagging="never" | |
).launch(debug=True) | |