Spaces:
Running
Running
import torch | |
from torch import nn | |
def get_residual(weights): | |
"""Get the order of the first significant digit of the tensors""" | |
signs = torch.sign(weights) | |
exps = torch.round(torch.log2(torch.abs(weights))) | |
pow_weights = signs * torch.pow(2, exps) | |
return pow_weights, exps | |
def rf8(model, n=4): | |
"""Residual Float-Point 8-bit Model Quantization""" | |
with torch.no_grad(): | |
for param in model.parameters(): | |
data1, exps1 = get_residual(param.data) | |
data2, exps2 = get_residual(param.data - data1) | |
flags = (exps1-exps2 <= n) | |
param.data = data1 + flags * data2 | |
def rf8_new(model): | |
"""8-bit Residual Float-pointing Format""" | |
with torch.no_grad(): | |
for param in model.parameters(): | |
param_ = param.cpu() | |
signs, exps = torch.sign(param_), torch.frexp(param_)[1] - 1 | |
bias = torch.tensor([-4, -3, -2, 1, 0], dtype=int) | |
exps_ = exps.unsqueeze(-1).expand(*exps.shape, 5) | |
Exponents = torch.exp2(exps) | |
res_list = torch.exp2(bias + exps_) | |
res_true = torch.abs(param_) - Exponents | |
res_true = res_true.unsqueeze(-1).expand(*res_true.shape, 5) | |
indices = (res_true - res_list).abs().argmin(-1).unsqueeze(-1) | |
Residuals = torch.gather(res_list, -1, indices).squeeze() | |
values = signs * (Exponents + Residuals) | |
values[values.abs() < 2**-12] = 0 | |
values[values.abs() > 2**5] = 0 | |
param.data = values.to(torch.bfloat16).to(param.device) |