import torch from torch import nn def get_residual(weights): """Get the order of the first significant digit of the tensors""" signs = torch.sign(weights) exps = torch.round(torch.log2(torch.abs(weights))) pow_weights = signs * torch.pow(2, exps) return pow_weights, exps def rf8(model, n=4): """Residual Float-Point 8-bit Model Quantization""" with torch.no_grad(): for param in model.parameters(): data1, exps1 = get_residual(param.data) data2, exps2 = get_residual(param.data - data1) flags = (exps1-exps2 <= n) param.data = data1 + flags * data2 def rf8_new(model): """8-bit Residual Float-pointing Format""" with torch.no_grad(): for param in model.parameters(): param_ = param.cpu() signs, exps = torch.sign(param_), torch.frexp(param_)[1] - 1 bias = torch.tensor([-4, -3, -2, 1, 0], dtype=int) exps_ = exps.unsqueeze(-1).expand(*exps.shape, 5) Exponents = torch.exp2(exps) res_list = torch.exp2(bias + exps_) res_true = torch.abs(param_) - Exponents res_true = res_true.unsqueeze(-1).expand(*res_true.shape, 5) indices = (res_true - res_list).abs().argmin(-1).unsqueeze(-1) Residuals = torch.gather(res_list, -1, indices).squeeze() values = signs * (Exponents + Residuals) values[values.abs() < 2**-12] = 0 values[values.abs() > 2**5] = 0 param.data = values.to(torch.bfloat16).to(param.device)