File size: 13,447 Bytes
2fda2ca
 
 
 
 
 
 
cf4739b
 
 
 
 
 
2fda2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b7ff1e4
 
 
 
 
 
 
2fda2ca
 
 
b7ff1e4
 
 
2fda2ca
 
 
 
 
 
 
 
 
 
b00876e
 
 
 
 
 
 
 
 
 
 
2fda2ca
 
9126461
 
 
 
 
 
 
 
 
2fda2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9126461
61c4504
b7ff1e4
61c4504
9126461
 
 
 
 
61c4504
2fda2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9126461
2fda2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b00876e
2fda2ca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import functools
import gc
import json
import logging
import os
from pathlib import Path

try:
    import spaces
except ModuleNotFoundError:
    spaces = lambda: None
    spaces.GPU = lambda fn: fn

import gradio as gr
import tiktoken
import torch
from openai import OpenAI
from transformers import AutoModelForCausalLM, AutoTokenizer

from igcs import grounding
from igcs.entities import Doc, Selection
from igcs.utils import log
from igcs.utils.diskcache import disk_cache


logger = logging.getLogger("igcs-demo")

_EXAMPLES_DIR = Path(__file__).parent

# In this simulation, we store only a single document although multi-document is possible.
# taken from https://en.wikipedia.org/wiki/Barack_Obama
with open(_EXAMPLES_DIR / "barack_obama_wiki.txt", encoding="utf8") as fp:
    DEFAULT_TEXT = fp.read().strip()

# This is the global doc in this demo
DEFAULT_PROMPTS = (
    "Select content that details Obama's initiatives",
    "Select content that discusses Obama's personal life",
    "Select content that details Obama's education",
    "Select content with Obama's financial data",
)

# see src/igcs/prompting.py for more info
PROMPT_TEMPLATE = (
    "Given the following document(s), {selection_instruction}. "
    "Output the exact text phrases from the given document(s) as a valid json array of strings. Do not change the copied text.\n\n"
    "Document #0:\n{doc.text}\n"
)

MODELS_LIST = [
    # local models:
    ("====== IGCS Fine-tuned SLMs ======", None),
    ("Qwen2.5-3b-GenCS-union (local)", "shmuelamar/Qwen2.5-3b-GenCS-union"),
    ("Qwen2.5-3b-GenCS-majority (local)", "shmuelamar/Qwen2.5-3b-GenCS-majority"),
    ("Qwen2.5-7b-GenCS-union (local)", "shmuelamar/Qwen2.5-7b-GenCS-union"),
    ("Qwen2.5-7b-GenCS-majority (local)", "shmuelamar/Qwen2.5-7b-GenCS-majority"),
    ("Llama-3-8B-GenCS-union (local)", "shmuelamar/Llama-3-8B-GenCS-union"),
    ("Llama-3-8B-GenCS-majority (local)", "shmuelamar/Llama-3-8B-GenCS-majority"),
    ("SmolLM2-1.7B-GenCS-union (local)", "shmuelamar/SmolLM2-1.7B-GenCS-union"),
    ("SmolLM2-1.7B-GenCS-majority (local)", "shmuelamar/SmolLM2-1.7B-GenCS-majority"),
    ("====== Zero-shot SLMs ======", None),
    ("Qwen/Qwen2.5-3B-Instruct (local)", "Qwen/Qwen2.5-3B-Instruct"),
    ("Qwen/Qwen2.5-7B-Instruct (local)", "Qwen/Qwen2.5-7B-Instruct"),
    ("meta-llama/Meta-Llama-3-8B-Instruct (local)", "meta-llama/Meta-Llama-3-8B-Instruct"),
    ("HuggingFaceTB/SmolLM2-1.7B-Instruct (local)", "HuggingFaceTB/SmolLM2-1.7B-Instruct"),
    ("====== API-based Models (OpenRouter) ======", None),
    ("qwen/qwen3-14b (API)", "api:qwen/qwen3-14b:free"),
    ("moonshotai/kimi-k2 (API)", "api:moonshotai/kimi-k2:free"),
    ("deepseek/deepseek-chat-v3-0324 (API)", "api:deepseek/deepseek-chat-v3-0324:free"),
    ("meta-llama/llama-3.3-70b-instruct (API)", "api:meta-llama/llama-3.3-70b-instruct:free"),
    ("meta-llama/llama-3.1-405b-instruct (API)", "api:meta-llama/llama-3.1-405b-instruct:free"),
]
DEFAULT_MODEL = MODELS_LIST[1][1]
MAX_INPUT_TOKENS = 4500
MAX_PROMPT_TOKENS = 256

INTRO_TEXT = """
## 🚀 Welcome to the IGCS Live Demo!

This is a demo for the paper titled [**“A Unifying Scheme for Extractive Content Selection Tasks”**][arxiv-paper] — try Instruction‑Guided Content Selection on **any**
text or code: use the demo text or upload your document, enter an instruction, choose a model, and hit **Submit** to see the most relevant spans highlighted!

🔍 Learn more in our [paper][arxiv-paper] and explore the full [GitHub repo](https://github.com/shmuelamar/igcs) ⭐. Enjoy! 🎉

[arxiv-paper]: http://arxiv.org/abs/2507.16922 "A Unifying Scheme for Extractive Content Selection Tasks"
"""


@spaces.GPU
def completion(prompt: str, model_id: str):
    # load model and tokenizer
    logger.info(f"loading local model and tokenizer for {model_id}")
    tokenizer = AutoTokenizer.from_pretrained(model_id)

    dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float16
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=dtype, device_map="auto")
    logger.info(f"done loading {model_id}")

    # tokenize
    input_ids = tokenizer.apply_chat_template(
        [
            {"role": "system", "content": "You are a helpful assistant."},
            {"role": "user", "content": prompt},
        ],
        add_generation_prompt=True,
        return_tensors="pt",
    ).to(model.device)

    # MPS (on Mac) requires manual attention mask
    attention_mask = torch.ones_like(input_ids, dtype=torch.long, device=model.device)

    logger.info(f"generating completion with model_id: {model.name_or_path} and prompt: {prompt!r}")
    outputs = model.generate(
        input_ids,
        attention_mask=attention_mask,
        max_new_tokens=2048,
        # eos_token_id=[tokenizer.encode("<|im_end|>", add_special_tokens=False)[0]],
        do_sample=False,
        top_k=None,
        top_p=None,
        temperature=None,
    )

    # decode response
    resp = tokenizer.decode(outputs[0][input_ids.shape[-1] :], skip_special_tokens=True)

    # cleanup memory
    del model, tokenizer
    torch.cuda.empty_cache()
    gc.collect()

    return resp


def completion_openrouter(prompt: str, model_id: str):
    logger.info(f"calling openrouter with model_id: {model_id} and prompt: {prompt!r}")
    client = load_openrouter_client()
    resp = client.chat.completions.create(
        model=model_id,
        messages=[{"role": "user", "content": prompt}],
        temperature=0.0,
    )
    return resp.choices[0].message.content


def load_openrouter_client():
    logger.info(f"connecting to OpenRouter")
    return OpenAI(
        base_url="https://openrouter.ai/api/v1",
        api_key=os.environ.get("OPENROUTER_API_KEY"),
    )


@disk_cache(cache_dir=_EXAMPLES_DIR / "models-cache")
def get_completion_cache(*, prompt: str, model_id: str) -> str:
    return get_completion(prompt=prompt, model_id=model_id)


@functools.lru_cache(maxsize=2048)
def get_completion(*, prompt: str, model_id: str):
    if model_id.startswith("api:"):
        return completion_openrouter(prompt, model_id.removeprefix("api:"))
    else:
        resp = completion(prompt, model_id)
        return resp


TIKTOKEN_TOKENIZER = tiktoken.encoding_for_model("gpt-4")


def count_tokens(text: str) -> int:
    return len(TIKTOKEN_TOKENIZER.encode(text))


def perform_igcs(
    doc: Doc, selection_instruction: str, model_id: str
) -> tuple[list[Selection] | None, str]:
    logger.info(f"performing selection with {selection_instruction!r} using {model_id!r}")
    prompt = PROMPT_TEMPLATE.format(doc=doc, selection_instruction=selection_instruction)

    # For the example inputs - we cache from disk as they are more popular
    if doc.text == DEFAULT_TEXT and selection_instruction in DEFAULT_PROMPTS:
        logger.info("using disk_cache mode")
        resp = get_completion_cache(prompt=prompt, model_id=model_id)
    else:
        resp = get_completion(prompt=prompt, model_id=model_id)
    logger.info(f"Got response from model: {model_id}: {resp!r}")

    # First, parse the selections as json array of strings
    selection_spans = grounding.parse_selection(resp)

    # Next, ground them to specific character positions in the source documents
    selections = grounding.ground_selections(selection_spans, docs=[doc])
    logger.info(f"model selections: {selections!r}")
    return selections, resp


def convert_selections_to_gradio_highlights(selections, doc) -> list[tuple[str, str | None]]:
    pos = 0
    highlights = []

    # add hallucinations outside the text itself:
    if any(sel.doc_id == -1 for sel in selections):
        highlights.append(
            ("\n\nHallucinated selections (not found in the document):\n\n", "hallucination")
        )
        for sel in selections:
            if sel.doc_id != -1:  # not hallucination
                continue

            highlights.append((sel.content + "\n", "hallucination"))

    selections.sort(key=lambda sel: (sel.end_pos, sel.start_pos))
    for sel in selections:
        if sel.doc_id == -1:
            continue  # hallucination
        if pos < sel.start_pos:
            highlights.append((doc.text[pos : sel.start_pos], None))  # outside selection
        elif pos >= sel.end_pos:
            continue  # two selections overlap - we only display the first.

        highlights.append(
            (doc.text[sel.start_pos : sel.end_pos], sel.metadata["mode"])
        )  # the selection
        pos = sel.end_pos

    if pos + 1 < len(doc.text):
        highlights.append((doc.text[pos:], None))  # end of the text

    return highlights


def process_igcs_request(selection_instruction: str, model_id: str, doc_data: list[dict]):
    if model_id is None:
        raise gr.Error("Please select a valid model from the list.")

    doc_text = "".join(
        [doc["token"] for doc in doc_data if doc["class_or_confidence"] != "hallucination"]
    )

    if count_tokens(doc_text) > MAX_INPUT_TOKENS:
        raise gr.Error(
            f"File too large! currently only up-to {MAX_INPUT_TOKENS} tokens are supported"
        )

    if count_tokens(selection_instruction) > MAX_PROMPT_TOKENS:
        raise gr.Error(f"Prompt is too long! only supports up-to {MAX_PROMPT_TOKENS} tokens.")

    # Perform content selection
    # TODO: cache examples
    doc = Doc(id=0, text=doc_text)
    selections, model_resp = perform_igcs(doc, selection_instruction, model_id)

    if selections is None:
        raise gr.Error(
            "Cannot parse selections, model response is invalid. please try another instruction or model."
        )

    # Post-process selections for display as highlighted spans
    highlights = convert_selections_to_gradio_highlights(selections, doc)
    selections_text = json.dumps([s.model_dump(mode="json") for s in selections], indent=2)
    return highlights, model_resp, selections_text


def get_app() -> gr.Interface:
    with gr.Blocks(title="Instruction-guided content selection", theme="ocean", head="") as app:
        with gr.Row():
            gr.Markdown(INTRO_TEXT)
        with gr.Row(equal_height=True):
            with gr.Column(scale=2, min_width=300):
                prompt_text = gr.Dropdown(
                    label="Content Selection Instruction:",
                    info='Choose an existing instruction or write a short one, starting with "Select content" or "Select code".',
                    value=DEFAULT_PROMPTS[0],
                    choices=DEFAULT_PROMPTS,
                    multiselect=False,
                    allow_custom_value=True,
                )
            with gr.Column(scale=1, min_width=200):
                model_selector = gr.Dropdown(
                    label="Choose a Model",
                    info="Choose a model from the predefined list below.",
                    value=DEFAULT_MODEL,
                    choices=MODELS_LIST,
                    multiselect=False,
                    allow_custom_value=False,
                )

        with gr.Row():
            submit_button = gr.Button("Submit", variant="primary")
            upload_button = gr.UploadButton("Upload a text or code file", file_count="single")
            reset_button = gr.Button("Default text")

        with gr.Row():
            with gr.Accordion("Detailed response", open=False):
                model_resp_text = gr.Code(
                    label="Model's raw response",
                    interactive=False,
                    value="No response yet",
                    lines=5,
                    language="json",
                )
                model_selections_text = gr.Code(
                    label="Grounded selections",
                    interactive=False,
                    value="No response yet",
                    lines=10,
                    language="json",
                )

        with gr.Row():
            highlighted_text = gr.HighlightedText(
                label="Selected Content",
                value=[(DEFAULT_TEXT, None), ("", "exact_match")],
                combine_adjacent=False,
                show_legend=True,
                interactive=False,
                color_map={
                    "exact_match": "lightgreen",
                    "normalized_match": "green",
                    "fuzzy_match": "yellow",
                    "hallucination": "red",
                },
            )

        def upload_file(filepath):
            with open(filepath, "r", encoding="utf8") as fp:
                text = fp.read().strip()

            if count_tokens(text) > MAX_INPUT_TOKENS:
                raise gr.Error(
                    f"File too large! currently only up-to {MAX_INPUT_TOKENS} tokens are supported"
                )

            return [(text, None), ("", "exact_match")]

        def reset_text(*args):
            return [(DEFAULT_TEXT, None), ("", "exact_match")]

        upload_button.upload(upload_file, upload_button, outputs=[highlighted_text])
        submit_button.click(
            process_igcs_request,
            inputs=[prompt_text, model_selector, highlighted_text],
            outputs=[highlighted_text, model_resp_text, model_selections_text],
        )
        reset_button.click(reset_text, reset_button, outputs=[highlighted_text])

    return app


if __name__ == "__main__":
    log.init()
    logger.info("starting app")
    app = get_app()
    app.queue()
    app.launch()
    logger.info("done")