File size: 9,670 Bytes
64609c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import gradio as gr
import pandas as pd
import aiohttp
import asyncio
import json
import io
import os
from typing import Optional, Tuple

class DataAnalyzer:
    def __init__(self):
        self.api_base_url = "https://llm.chutes.ai/v1/chat/completions"
    
    async def analyze_with_chutes(self, api_token: str, data_summary: str, user_question: str = None) -> str:
        """Send data to Chutes API for analysis"""
        headers = {
            "Authorization": f"Bearer {api_token}",
            "Content-Type": "application/json"
        }
        
        # Create the prompt based on whether it's initial analysis or follow-up question
        if user_question:
            prompt = f"""Based on this dataset summary:
{data_summary}
User question: {user_question}
Please provide a detailed answer based on the data."""
        else:
            prompt = f"""Analyze the following dataset and provide comprehensive insights:
{data_summary}
Please provide:
1. Key statistical insights
2. Notable patterns or trends
3. Data quality observations
4. Business recommendations
5. Potential areas for further analysis
Keep the analysis clear, actionable, and data-driven."""

        body = {
            "model": "openai/gpt-oss-20b",
            "messages": [
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            "stream": True,
            "max_tokens": 2048,
            "temperature": 0.3  # Lower temperature for more consistent analysis
        }
        
        try:
            async with aiohttp.ClientSession() as session:
                async with session.post(self.api_base_url, headers=headers, json=body) as response:
                    if response.status != 200:
                        return f"Error: API request failed with status {response.status}"
                    
                    full_response = ""
                    async for line in response.content:
                        line = line.decode("utf-8").strip()
                        if line.startswith("data: "):
                            data = line[6:]
                            if data == "[DONE]":
                                break
                            try:
                                chunk_data = json.loads(data)
                                if "choices" in chunk_data and len(chunk_data["choices"]) > 0:
                                    delta = chunk_data["choices"][0].get("delta", {})
                                    content = delta.get("content", "")
                                    if content:
                                        full_response += content
                            except json.JSONDecodeError:
                                continue
                    
                    return full_response if full_response else "No response received from the model."
                    
        except Exception as e:
            return f"Error connecting to Chutes API: {str(e)}"

    def process_file(self, file_path: str) -> Tuple[pd.DataFrame, str]:
        """Process uploaded CSV or Excel file"""
        try:
            file_extension = os.path.splitext(file_path)[1].lower()
            
            if file_extension == '.csv':
                df = pd.read_csv(file_path)
            elif file_extension in ['.xlsx', '.xls']:
                df = pd.read_excel(file_path)
            else:
                raise ValueError("Unsupported file format. Please upload CSV or Excel files.")
            
            # Generate comprehensive data summary
            summary = self.generate_data_summary(df)
            return df, summary
            
        except Exception as e:
            raise Exception(f"Error processing file: {str(e)}")
    
    def generate_data_summary(self, df: pd.DataFrame) -> str:
        """Generate a comprehensive summary of the dataset"""
        summary = []
        
        # Basic info
        summary.append(f"Dataset Overview:")
        summary.append(f"- Shape: {df.shape[0]} rows Γ— {df.shape[1]} columns")
        summary.append(f"- Total cells: {df.shape[0] * df.shape[1]:,}")
        
        # Column information
        summary.append(f"\nColumn Information:")
        for i, (col, dtype) in enumerate(df.dtypes.items()):
            null_count = df[col].isnull().sum()
            null_pct = (null_count / len(df)) * 100
            summary.append(f"- {col} ({dtype}): {null_count} nulls ({null_pct:.1f}%)")
        
        # Numerical columns statistics
        numeric_cols = df.select_dtypes(include=['number']).columns
        if len(numeric_cols) > 0:
            summary.append(f"\nNumerical Columns Summary:")
            for col in numeric_cols:
                stats = df[col].describe()
                summary.append(f"- {col}: Mean={stats['mean']:.2f}, Std={stats['std']:.2f}, Range=[{stats['min']:.2f}, {stats['max']:.2f}]")
        
        # Categorical columns
        categorical_cols = df.select_dtypes(include=['object', 'category']).columns
        if len(categorical_cols) > 0:
            summary.append(f"\nCategorical Columns Summary:")
            for col in categorical_cols:
                unique_count = df[col].nunique()
                most_common = df[col].mode().iloc[0] if len(df[col].mode()) > 0 else "N/A"
                summary.append(f"- {col}: {unique_count} unique values, Most common: '{most_common}'")
        
        # Sample data
        summary.append(f"\nFirst 5 rows preview:")
        summary.append(df.head().to_string())
        
        return "\n".join(summary)

# Initialize the analyzer
analyzer = DataAnalyzer()

async def analyze_data(file, api_key, user_question=""):
    """Main function to analyze uploaded data"""
    if not file:
        return "Please upload a CSV or Excel file.", "", ""
    
    if not api_key:
        return "Please enter your Chutes API key.", "", ""
    
    try:
        # Process the uploaded file
        df, data_summary = analyzer.process_file(file.name)
        
        # Get AI analysis
        ai_analysis = await analyzer.analyze_with_chutes(api_key, data_summary, user_question)
        
        # Format the complete response
        response = f"""## πŸ“Š Data Analysis Complete!
### πŸ“ˆ Dataset Overview:
{data_summary}
### πŸ€– AI Insights & Recommendations:
{ai_analysis}
"""
        
        return response, data_summary, df.head(10).to_html()
        
    except Exception as e:
        return f"Error: {str(e)}", "", ""

def sync_analyze_data(file, api_key, user_question=""):
    """Synchronous wrapper for the async analyze function"""
    return asyncio.run(analyze_data(file, api_key, user_question))

# Create the Gradio interface
with gr.Blocks(title="πŸ“Š Smart Data Analyzer", theme=gr.themes.Ocean()) as app:
    gr.Markdown("""
    # πŸ“Š Smart Data Analyzer
    ### Upload your CSV/Excel file and get instant AI-powered insights using OpenAI's gpt-oss-20b model via Chutes!
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            # File upload
            file_input = gr.File(
                label="πŸ“ Upload CSV or Excel File",
                file_types=[".csv", ".xlsx", ".xls"],
                file_count="single"
            )
            
            # API key input
            api_key_input = gr.Textbox(
                label="πŸ”‘ Chutes API Key",
                placeholder="Enter your Chutes API token here...",
                type="password",
                lines=1
            )
            
            # Optional question input
            question_input = gr.Textbox(
                label="❓ Ask a Specific Question (Optional)",
                placeholder="e.g., What are the sales trends? Which region performs best?",
                lines=2
            )
            
            # Analyze button
            analyze_btn = gr.Button("πŸš€ Analyze Data", variant="primary", size="lg")
        
        with gr.Column(scale=2):
            # Results display
            analysis_output = gr.Markdown(
                label="πŸ“‹ Analysis Results",
                value="Upload a file and click 'Analyze Data' to see insights..."
            )
    
    # Additional outputs (hidden by default)
    with gr.Accordion("πŸ“Š Data Preview", open=False):
        data_preview = gr.HTML(label="First 10 Rows")
    
    with gr.Accordion("πŸ” Raw Data Summary", open=False):
        raw_summary = gr.Textbox(label="Dataset Summary", lines=10)
    
    # Event handlers
    analyze_btn.click(
        fn=sync_analyze_data,
        inputs=[file_input, api_key_input, question_input],
        outputs=[analysis_output, raw_summary, data_preview]
    )
    
    # Example section
    gr.Markdown("""
    ### πŸ’‘ Tips for Best Results:
    - **File Size**: Keep files under 10MB for fastest processing
    - **API Key**: Get your free Chutes API key from [chutes.ai](https://chutes.ai)
    - **Questions**: Be specific! Ask about trends, patterns, outliers, or recommendations
    - **Formats**: Supports CSV, XLSX, and XLS files
    
    ### 🎯 Example Questions to Ask:
    - "What are the key trends in this sales data?"
    - "Which products are underperforming?"
    - "Are there any seasonal patterns?"
    - "What recommendations do you have based on this data?"
    """)

# Launch the application
if __name__ == "__main__":
    app.launch(
        share=True
    )