File size: 31,708 Bytes
64609c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
import gradio as gr
import pandas as pd
import aiohttp
import asyncio
import json
import os
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
from typing import Optional, Tuple, Dict, Any
import logging
from datetime import datetime
import re
from jinja2 import Template
import markdown  # Requires 'markdown' package: install via `pip install markdown`

# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

class EnhancedDataAnalyzer:
    def __init__(self):
        self.api_base_url = "https://llm.chutes.ai/v1/chat/completions"
        self.max_file_size = 50 * 1024 * 1024  # 50MB limit
        self.conversation_history = []
        self.current_df = None
        self.current_charts = None
    
    def validate_api_key(self, api_key: str) -> bool:
        """Validate API key format"""
        return bool(api_key and len(api_key.strip()) > 10)
    
    def validate_file(self, file) -> Tuple[bool, str]:
        """Validate uploaded file"""
        if not file:
            return False, "No file uploaded"
        
        file_size = os.path.getsize(file.name)
        if file_size > self.max_file_size:
            return False, f"File too large. Maximum size: {self.max_file_size // (1024*1024)}MB"
        
        file_extension = os.path.splitext(file.name)[1].lower()
        if file_extension not in ['.csv', '.xlsx', '.xls']:
            return False, "Unsupported format. Please upload CSV or Excel files only."
        
        return True, "File valid"
    
    async def analyze_with_chutes(self, api_token: str, data_summary: str, user_question: str = None) -> str:
        """Enhanced API call with better error handling and streaming"""
        headers = {
            "Authorization": f"Bearer {api_token.strip()}",
            "Content-Type": "application/json"
        }
        
        # Create context-aware prompt
        if user_question:
            prompt = f"""You are a data analyst expert. Based on this dataset:
{data_summary}
User's specific question: {user_question}
Provide a detailed, actionable answer with specific data points and recommendations."""
        else:
            prompt = f"""You are a senior data analyst. Analyze this dataset thoroughly:
{data_summary}
Provide a comprehensive analysis including:
1. **Key Statistical Insights**: Most important numbers and what they mean
2. **Patterns & Trends**: Notable patterns, correlations, or anomalies
3. **Data Quality Assessment**: Missing values, outliers, data consistency
4. **Business Intelligence**: Actionable insights and opportunities
5. **Recommendations**: Specific next steps or areas to investigate
Format your response with clear sections and bullet points for readability."""

        body = {
            "model": "openai/gpt-oss-20b",
            "messages": [
                {
                    "role": "system",
                    "content": "You are an expert data analyst who provides clear, actionable insights from datasets. Always structure your responses with clear headings and specific data points."
                },
                {
                    "role": "user",
                    "content": prompt
                }
            ],
            "stream": True,
            "max_tokens": 3000,
            "temperature": 0.2,
            "top_p": 0.9
        }
        
        try:
            timeout = aiohttp.ClientTimeout(total=30)
            async with aiohttp.ClientSession(timeout=timeout) as session:
                async with session.post(self.api_base_url, headers=headers, json=body) as response:
                    if response.status == 401:
                        return "❌ **Authentication Error**: Invalid API key. Please check your Chutes API token."
                    elif response.status == 429:
                        return "⏳ **Rate Limit**: Too many requests. Please wait a moment and try again."
                    elif response.status != 200:
                        return f"❌ **API Error**: Request failed with status {response.status}"
                    
                    full_response = ""
                    async for line in response.content:
                        line = line.decode("utf-8").strip()
                        if line.startswith("data: "):
                            data = line[6:]
                            if data == "[DONE]":
                                break
                            try:
                                chunk_data = json.loads(data)
                                if "choices" in chunk_data and len(chunk_data["choices"]) > 0:
                                    delta = chunk_data["choices"][0].get("delta", {})
                                    content = delta.get("content", "")
                                    if content:
                                        full_response += content
                            except json.JSONDecodeError:
                                continue
                    
                    return full_response if full_response else "⚠️ No response received from the model."
                    
        except asyncio.TimeoutError:
            return "⏰ **Timeout Error**: Request took too long. Please try again."
        except Exception as e:
            logger.error(f"API Error: {str(e)}")
            return f"❌ **Connection Error**: {str(e)}"

    def process_file(self, file_path: str) -> Tuple[pd.DataFrame, str, str]:
        """Enhanced file processing with better error handling"""
        try:
            file_extension = os.path.splitext(file_path)[1].lower()
            
            if file_extension == '.csv':
                for encoding in ['utf-8', 'latin-1', 'cp1252']:
                    try:
                        df = pd.read_csv(file_path, encoding=encoding)
                        break
                    except UnicodeDecodeError:
                        continue
                else:
                    raise ValueError("Could not decode CSV file. Please check file encoding.")
            elif file_extension in ['.xlsx', '.xls']:
                df = pd.read_excel(file_path)
            else:
                raise ValueError("Unsupported file format. Please upload CSV or Excel files.")
            
            df.columns = df.columns.str.strip().str.replace(r'\s+', ' ', regex=True)
            self.current_df = df
            data_summary = self.generate_enhanced_summary(df)
            charts_html = self.generate_visualizations(df)
            
            return df, data_summary, charts_html
            
        except Exception as e:
            raise Exception(f"Error processing file: {str(e)}")
    
    def generate_enhanced_summary(self, df: pd.DataFrame) -> str:
        """Generate comprehensive data summary with statistical insights"""
        summary = []
        summary.append(f"# πŸ“Š Dataset Analysis Report")
        summary.append(f"**Generated**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        summary.append(f"**File Size**: {df.shape[0]:,} rows Γ— {df.shape[1]} columns")
        memory_usage = df.memory_usage(deep=True).sum() / 1024**2
        summary.append(f"**Memory Usage**: {memory_usage:.2f} MB\n")
        
        type_counts = df.dtypes.value_counts()
        summary.append("## πŸ“‹ Column Types:")
        for dtype, count in type_counts.items():
            summary.append(f"- **{dtype}**: {count} columns")
        
        missing_data = df.isnull().sum()
        missing_pct = (missing_data / len(df) * 100).round(2)
        missing_summary = missing_data[missing_data > 0].sort_values(ascending=False)
        
        if len(missing_summary) > 0:
            summary.append("\n## ⚠️ Missing Data:")
            for col, count in missing_summary.head(10).items():
                pct = missing_pct[col]
                summary.append(f"- **{col}**: {count:,} missing ({pct}%)")
        else:
            summary.append("\n## βœ… Data Quality: No missing values detected!")
        
        numeric_cols = df.select_dtypes(include=[np.number]).columns
        if len(numeric_cols) > 0:
            summary.append(f"\n## πŸ“ˆ Numerical Columns Analysis ({len(numeric_cols)} columns):")
            for col in numeric_cols[:10]:
                stats = df[col].describe()
                outliers = len(df[df[col] > (stats['75%'] + 1.5 * (stats['75%'] - stats['25%']))])
                summary.append(f"- **{col}**: ΞΌ={stats['mean']:.2f}, Οƒ={stats['std']:.2f}, outliers={outliers}")
        
        categorical_cols = df.select_dtypes(include=['object', 'category']).columns
        if len(categorical_cols) > 0:
            summary.append(f"\n## πŸ“ Categorical Columns Analysis ({len(categorical_cols)} columns):")
            for col in categorical_cols[:10]:
                unique_count = df[col].nunique()
                cardinality = "High" if unique_count > len(df) * 0.9 else "Medium" if unique_count > 10 else "Low"
                most_common = df[col].mode().iloc[0] if len(df[col].mode()) > 0 else "N/A"
                summary.append(f"- **{col}**: {unique_count:,} unique values ({cardinality} cardinality), Top: '{most_common}'")
        
        summary.append("\n## πŸ” Data Sample (First 3 Rows):")
        sample_df = df.head(3)
        for idx, row in sample_df.iterrows():
            summary.append(f"\n**Row {idx + 1}:**")
            for col, val in row.items():
                summary.append(f"  - {col}: {val}")
        
        return "\n".join(summary)
    
    def generate_visualizations(self, df: pd.DataFrame) -> str:
        """Generate comprehensive visualizations for the dataset"""
        charts_html = []
        
        try:
            missing_data = df.isnull().sum()
            if missing_data.sum() > 0:
                fig = px.bar(
                    x=missing_data.index, 
                    y=missing_data.values, 
                    title="πŸ” Missing Data Analysis",
                    labels={'x': 'Columns', 'y': 'Missing Values Count'},
                    color=missing_data.values,
                    color_continuous_scale='Reds'
                )
                fig.update_layout(
                    height=400, 
                    showlegend=False,
                    title_x=0.5,
                    xaxis_tickangle=-45
                )
                charts_html.append(f"<h3>πŸ“Š Data Quality Overview</h3>")
                charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="missing_data_chart"))
            
            numeric_cols = df.select_dtypes(include=[np.number]).columns
            if len(numeric_cols) > 1:
                corr_matrix = df[numeric_cols].corr()
                fig = px.imshow(
                    corr_matrix, 
                    title="πŸ”— Correlation Matrix - Numerical Variables",
                    color_continuous_scale='RdBu_r',
                    aspect="auto",
                    text_auto=True
                )
                fig.update_layout(height=500, title_x=0.5)
                charts_html.append(f"<h3>πŸ“ˆ Correlation Analysis</h3>")
                charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="correlation_chart"))
            
            if len(numeric_cols) > 0:
                for i, col in enumerate(numeric_cols[:3]):
                    fig = px.histogram(
                        df, 
                        x=col, 
                        title=f"πŸ“Š Distribution: {col}",
                        marginal="box",
                        nbins=30
                    )
                    fig.update_layout(height=400, title_x=0.5)
                    if i == 0:
                        charts_html.append(f"<h3>πŸ“ˆ Data Distributions</h3>")
                    charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"dist_chart_{i}"))
            
            categorical_cols = df.select_dtypes(include=['object', 'category']).columns
            if len(categorical_cols) > 0:
                for i, col in enumerate(categorical_cols[:2]):
                    if df[col].nunique() <= 20:
                        value_counts = df[col].value_counts().head(10)
                        fig = px.bar(
                            x=value_counts.values,
                            y=value_counts.index,
                            orientation='h',
                            title=f"πŸ“Š Top 10 Values: {col}",
                            labels={'x': 'Count', 'y': col}
                        )
                        fig.update_layout(height=400, title_x=0.5)
                        if i == 0:
                            charts_html.append(f"<h3>πŸ“ Categorical Data Analysis</h3>")
                        charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"cat_chart_{i}"))
            
            summary_data = {
                'Metric': ['Total Rows', 'Total Columns', 'Numeric Columns', 'Categorical Columns', 'Missing Values'],
                'Count': [
                    len(df),
                    len(df.columns),
                    len(numeric_cols),
                    len(categorical_cols),
                    df.isnull().sum().sum()
                ]
            }
            
            fig = px.bar(
                summary_data,
                x='Metric',
                y='Count',
                title="πŸ“‹ Dataset Overview",
                color='Count',
                color_continuous_scale='Blues'
            )
            fig.update_layout(height=400, title_x=0.5, showlegend=False)
            charts_html.append(f"<h3>πŸ“Š Dataset Overview</h3>")
            charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="overview_chart"))
            
            self.current_charts = charts_html
            return "\n".join(charts_html) if charts_html else "<p>No charts could be generated for this dataset.</p>"
        
        except Exception as e:
            logger.error(f"Chart generation error: {str(e)}")
            return f"<p>❌ Chart generation failed: {str(e)}</p>"

    def generate_report_html(self, analysis_text: str, data_summary: str, file_name: str = "Unknown") -> str:
        """Generate HTML report with properly formatted text and print button"""
        html_template = """
        <!DOCTYPE html>
        <html>
        <head>
            <meta charset="UTF-8">
            <title>Data Analysis Report</title>
            <style>
                body {
                    font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
                    line-height: 1.6;
                    color: #333;
                    max-width: 1200px;
                    margin: 0 auto;
                    padding: 20px;
                    background: #f8f9fa;
                }
                .header {
                    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
                    color: white;
                    padding: 30px;
                    border-radius: 10px;
                    margin-bottom: 30px;
                    text-align: center;
                }
                .section {
                    background: white;
                    padding: 25px;
                    margin-bottom: 20px;
                    border-radius: 8px;
                    box-shadow: 0 2px 10px rgba(0,0,0,0.1);
                }
                .chart-container {
                    margin: 20px 0;
                    padding: 15px;
                    background: #f8f9ff;
                    border-radius: 8px;
                    border-left: 4px solid #667eea;
                }
                h1, h2, h3 { 
                    color: #2c3e50;
                    margin-top: 20px;
                    margin-bottom: 15px;
                }
                .metadata {
                    background: #e8f4f8;
                    padding: 15px;
                    border-radius: 5px;
                    margin-bottom: 20px;
                }
                .footer {
                    text-align: center;
                    color: #666;
                    margin-top: 40px;
                    padding: 20px;
                    background: #f1f1f1;
                    border-radius: 5px;
                }
                pre {
                    background: #f4f4f4;
                    padding: 15px;
                    border-radius: 5px;
                    overflow-x: auto;
                    white-space: pre-wrap;
                    font-size: 14px;
                }
                strong {
                    color: #2c3e50;
                    font-weight: 600;
                }
                table {
                    width: 100%;
                    border-collapse: collapse;
                    margin: 20px 0;
                }
                th, td {
                    border: 1px solid #ddd;
                    padding: 8px;
                    text-align: left;
                }
                th {
                    background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
                    color: white;
                }
                tr:nth-child(even) {
                    background-color: #f2f2f2;
                }
                .print-button {
                    background: #667eea;
                    color: white;
                    padding: 10px 20px;
                    border: none;
                    border-radius: 5px;
                    cursor: pointer;
                    font-size: 16px;
                    margin: 10px 0;
                    display: inline-block;
                }
                .print-button:hover {
                    background: #764ba2;
                }
                @media print {
                    .print-button {
                        display: none;
                    }
                    body {
                        background: white;
                    }
                    .section, .metadata, .footer {
                        box-shadow: none;
                    }
                }
            </style>
            <script>
                function printReport() {
                    window.print();
                }
            </script>
        </head>
        <body>
            <div class="header">
                <h1>πŸš€ Smart Data Analysis Report</h1>
                <p>Comprehensive AI-Powered Data Insights</p>
            </div>
            
            <div class="metadata">
                <strong>πŸ“ File:</strong> {{ file_name }}<br>
                <strong>πŸ“… Generated:</strong> {{ timestamp }}<br>
                <strong>πŸ€– Model:</strong> OpenAI gpt-oss-20b
            </div>
            
            <div class="section">
                <h2>🎯 AI Analysis & Insights</h2>
                <button class="print-button" onclick="printReport()">πŸ–¨οΈ Print as PDF</button>
                <div>{{ ai_analysis }}</div>
            </div>
            
            <div class="section">
                <h2>πŸ“Š Visualizations</h2>
                <div class="chart-container">
                    {{ charts_html }}
                </div>
            </div>
            
            <div class="section">
                <h2>πŸ“‹ Technical Data Summary</h2>
                <pre>{{ data_summary }}</pre>
            </div>
            
            <div class="footer">
                <p>Report generated by Smart Data Analyzer Pro β€’ Powered by Smart AI</p>
                <p>For questions or support, contact +8801719296601 (via Whatsapp)</p>
            </div>
        </body>
        </html>
        """
        
        template = Template(html_template)
        ai_analysis_html = markdown.markdown(analysis_text, extensions=['extra', 'tables'])
        charts_content = "\n".join(self.current_charts) if self.current_charts else "<p>No visualizations available</p>"
        
        return template.render(
            file_name=file_name,
            timestamp=datetime.now().strftime('%Y-%m-%d %H:%M:%S'),
            ai_analysis=ai_analysis_html,
            charts_html=charts_content,
            data_summary=data_summary
        )

analyzer = EnhancedDataAnalyzer()

async def analyze_data(file, api_key, user_question="", progress=gr.Progress()):
    if not file:
        return "❌ Please upload a CSV or Excel file.", "", "", "", None

    if not analyzer.validate_api_key(api_key):
        return "❌ Please enter a valid Chutes API key (minimum 10 characters).", "", "", "", None

    is_valid, validation_msg = analyzer.validate_file(file)
    if not is_valid:
        return f"❌ {validation_msg}", "", "", "", None

    progress(0.1, desc="πŸ“ Reading file...")
    try:
        df, data_summary, charts_html = analyzer.process_file(file.name)
        progress(0.3, desc="πŸ“Š Processing data...")
        progress(0.5, desc="πŸ€– Generating AI insights...")
        ai_analysis = await analyzer.analyze_with_chutes(api_key, data_summary, user_question)
        progress(0.9, desc="✨ Finalizing results...")

        response = f"""# 🎯 Analysis Complete!
{ai_analysis}
---
*Analysis powered by OpenAI gpt-oss-20b via Chutes β€’ Generated at {datetime.now().strftime('%H:%M:%S')}*
"""
        data_preview_html = df.head(15).to_html(
            classes="table table-striped table-hover",
            table_id="data-preview-table",
            escape=False
        )
        styled_preview = f"""
        <style>
            #data-preview-table {{
                width: 100%;
                border-collapse: collapse;
                margin: 20px 0;
                font-size: 14px;
            }}
            #data-preview-table th {{
                background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
                color: white;
                padding: 12px 8px;
                text-align: left;
                font-weight: bold;
            }}
            #data-preview-table td {{
                padding: 10px 8px;
                border-bottom: 1px solid #ddd;
            }}
            #data-preview-table tr:hover {{
                background-color: #f5f5f5;
            }}
        </style>
        {data_preview_html}
        """

        progress(1.0, desc="βœ… Done!")
        return response, data_summary, styled_preview, charts_html, file.name

    except Exception as e:
        logger.error(f"Analysis error: {str(e)}")
        return f"❌ **Error**: {str(e)}", "", "", "", None

def sync_analyze_data(file, api_key, user_question="", progress=gr.Progress()):
    return asyncio.run(analyze_data(file, api_key, user_question, progress))

def clear_all():
    analyzer.current_df = None
    analyzer.current_charts = None
    return None, "", "", "", "", "", "", None

def download_report(analysis_text, data_summary, file_name, format_choice):
    if not analysis_text:
        return None, "❌ No analysis data available for download."
    
    timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
    file_base_name = os.path.splitext(file_name)[0] if file_name else "data_analysis"
    
    try:
        if format_choice == "HTML":
            html_content = analyzer.generate_report_html(analysis_text, data_summary, file_name)
            filename = f"{file_base_name}_analysis_report_{timestamp}.html"
            with open(filename, 'w', encoding='utf-8') as f:
                f.write(html_content)
            return filename, f"βœ… HTML report generated successfully! File: {filename}"
            
        else:  # Markdown
            report = f"""# Data Analysis Report
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
File: {file_name}
## AI Analysis:
{analysis_text}
## Raw Data Summary:
{data_summary}
"""
            filename = f"{file_base_name}_analysis_report_{timestamp}.md"
            with open(filename, 'w', encoding='utf-8') as f:
                f.write(report)
            return filename, f"βœ… Markdown report generated successfully! File: {filename}"
            
    except Exception as e:
        logger.error(f"Report generation error: {str(e)}")
        return None, f"❌ Error generating report: {str(e)}"

with gr.Blocks(
    title="πŸš€ Smart Data Analyzer Pro", 
    theme=gr.themes.Ocean(),
    css="""
    .gradio-container {
        font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
    }
    .tab-nav {
        background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
    }
    .upload-area {
        border: 2px dashed #667eea;
        border-radius: 10px;
        padding: 20px;
        text-align: center;
        background: #f8f9ff;
    }
    """
) as app:
    current_file_name = gr.State("")
    
    gr.Markdown("""
    # πŸš€ Smart Data Analyzer Pro
    ### AI-Powered Excel & CSV Analysis with OpenAI gpt-oss-20b
    
    Upload your data files and get instant professional insights and downloadable reports!
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.Markdown("### βš™οΈ Configuration")
            api_key_input = gr.Textbox(
                label="πŸ”‘ Chutes API Key",
                placeholder="sk-chutes-your-api-key-here...",
                type="password",
                lines=1,
                info="Get your free API key from chutes.ai"
            )
            file_input = gr.File(
                label="πŸ“ Upload Data File",
                file_types=[".csv", ".xlsx", ".xls"],
                file_count="single",
                elem_classes=["upload-area"]
            )
            with gr.Row():
                analyze_btn = gr.Button("πŸš€ Analyze Data", variant="primary", size="lg")
                clear_btn = gr.Button("πŸ—‘οΈ Clear All", variant="secondary")
            with gr.Group():
                gr.Markdown("### πŸ“Š Quick Stats")
                file_stats = gr.Textbox(
                    label="File Information",
                    lines=3,
                    interactive=False,
                    placeholder="Upload a file to see statistics..."
                )
        
        with gr.Column(scale=2):
            gr.Markdown("### 🎯 Analysis Results")
            analysis_output = gr.Markdown(
                value="πŸ“‹ **Ready to analyze your data!**\n\nUpload a CSV or Excel file and click 'Analyze Data' to get started.",
                show_label=False
            )
    
    with gr.Tabs():
        with gr.Tab("πŸ’¬ Ask Questions"):
            question_input = gr.Textbox(
                label="❓ Ask Specific Questions About Your Data",
                placeholder="Examples:\nβ€’ What are the top 5 customers by revenue?\nβ€’ Are there any seasonal trends?\nβ€’ Which products have the highest margins?\nβ€’ What anomalies do you see in this data?",
                lines=3
            )
            ask_btn = gr.Button("πŸ” Get Answer", variant="primary")
            question_output = gr.Markdown()
        
        with gr.Tab("πŸ“Š Data Preview"):
            data_preview = gr.HTML(
                label="Dataset Preview",
                value="<p>Upload a file to see data preview...</p>"
            )
        
        with gr.Tab("πŸ” Raw Summary"):
            raw_summary = gr.Textbox(
                label="Detailed Data Summary",
                lines=15,
                max_lines=20,
                show_copy_button=True
            )
        
        with gr.Tab("πŸ’Ύ Export Reports"):
            gr.Markdown("### πŸ“₯ Download Your Analysis Report")
            with gr.Row():
                format_choice = gr.Radio(
                    choices=["HTML", "Markdown"],
                    value="HTML",
                    label="πŸ“„ Report Format",
                    info="Choose your preferred download format"
                )
            download_btn = gr.Button("πŸ“₯ Generate & Download Report", variant="primary", size="lg")
            download_status = gr.Textbox(label="Download Status", interactive=False)
            download_file = gr.File(label="πŸ“„ Download Link", visible=True)

    def update_file_stats(file):
        if not file:
            return "No file uploaded"
        try:
            file_size = os.path.getsize(file.name) / (1024 * 1024)
            file_name = os.path.basename(file.name)
            return f"πŸ“„ **File**: {file_name}\nπŸ“ **Size**: {file_size:.2f} MB\n⏰ **Uploaded**: {datetime.now().strftime('%H:%M:%S')}"
        except:
            return "File information unavailable"
    
    def handle_analysis(file, api_key, user_question="", progress=gr.Progress()):
        result = sync_analyze_data(file, api_key, user_question, progress)
        if len(result) == 5:
            return result[0], result[1], result[2], result[4]
        else:
            return result[0], result[1], result[2], ""
    
    def handle_question_analysis(file, api_key, question, progress=gr.Progress()):
        if not question.strip():
            return "❓ Please enter a specific question about your data."
        result = sync_analyze_data(file, api_key, question, progress)
        return result[0]
    
    analyze_btn.click(
        fn=handle_analysis,
        inputs=[file_input, api_key_input, gr.Textbox(value="", visible=False)],
        outputs=[analysis_output, raw_summary, data_preview, current_file_name],
        show_progress=True
    )
    
    ask_btn.click(
        fn=handle_question_analysis,
        inputs=[file_input, api_key_input, question_input],
        outputs=[question_output],
        show_progress=True
    )
    
    file_input.change(
        fn=update_file_stats,
        inputs=[file_input],
        outputs=[file_stats]
    )
    
    clear_btn.click(
        fn=clear_all,
        outputs=[file_input, api_key_input, question_input, analysis_output, 
                question_output, data_preview, raw_summary, current_file_name]
    )
    
    download_btn.click(
        fn=download_report,
        inputs=[analysis_output, raw_summary, current_file_name, format_choice],
        outputs=[download_file, download_status]
    )
    
    gr.Markdown("""
    ---
    ### πŸ’‘ Pro Tips for Better Analysis:
    
    **🎯 For Best Results:**
    - Clean your data before upload (remove extra headers, format dates consistently)
    - Use descriptive column names
    - Ask specific questions like "What drives the highest profits?" instead of "Analyze this data"
    
    **πŸ“₯ Export Options:**
    - **HTML**: Interactive report with embedded charts and print-to-PDF option
    - **Markdown**: Simple text format for documentation
    
    **⚑ Speed Optimization:**
    - Files under 10MB process fastest
    - CSV files typically load faster than Excel
    - Limit to essential columns for quicker analysis
    
    **πŸ”§ Supported Formats:** CSV, XLSX, XLS | **πŸ“ Max Size:** 50MB | **πŸš€ Response Time:** ~3-5 seconds
    """)

if __name__ == "__main__":
    app.queue(max_size=10)
    app.launch()