Spaces:
Sleeping
Sleeping
File size: 31,708 Bytes
64609c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
import gradio as gr import pandas as pd import aiohttp import asyncio import json import os import numpy as np import plotly.express as px import plotly.graph_objects as go from typing import Optional, Tuple, Dict, Any import logging from datetime import datetime import re from jinja2 import Template import markdown # Requires 'markdown' package: install via `pip install markdown` # Configure logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class EnhancedDataAnalyzer: def __init__(self): self.api_base_url = "https://llm.chutes.ai/v1/chat/completions" self.max_file_size = 50 * 1024 * 1024 # 50MB limit self.conversation_history = [] self.current_df = None self.current_charts = None def validate_api_key(self, api_key: str) -> bool: """Validate API key format""" return bool(api_key and len(api_key.strip()) > 10) def validate_file(self, file) -> Tuple[bool, str]: """Validate uploaded file""" if not file: return False, "No file uploaded" file_size = os.path.getsize(file.name) if file_size > self.max_file_size: return False, f"File too large. Maximum size: {self.max_file_size // (1024*1024)}MB" file_extension = os.path.splitext(file.name)[1].lower() if file_extension not in ['.csv', '.xlsx', '.xls']: return False, "Unsupported format. Please upload CSV or Excel files only." return True, "File valid" async def analyze_with_chutes(self, api_token: str, data_summary: str, user_question: str = None) -> str: """Enhanced API call with better error handling and streaming""" headers = { "Authorization": f"Bearer {api_token.strip()}", "Content-Type": "application/json" } # Create context-aware prompt if user_question: prompt = f"""You are a data analyst expert. Based on this dataset: {data_summary} User's specific question: {user_question} Provide a detailed, actionable answer with specific data points and recommendations.""" else: prompt = f"""You are a senior data analyst. Analyze this dataset thoroughly: {data_summary} Provide a comprehensive analysis including: 1. **Key Statistical Insights**: Most important numbers and what they mean 2. **Patterns & Trends**: Notable patterns, correlations, or anomalies 3. **Data Quality Assessment**: Missing values, outliers, data consistency 4. **Business Intelligence**: Actionable insights and opportunities 5. **Recommendations**: Specific next steps or areas to investigate Format your response with clear sections and bullet points for readability.""" body = { "model": "openai/gpt-oss-20b", "messages": [ { "role": "system", "content": "You are an expert data analyst who provides clear, actionable insights from datasets. Always structure your responses with clear headings and specific data points." }, { "role": "user", "content": prompt } ], "stream": True, "max_tokens": 3000, "temperature": 0.2, "top_p": 0.9 } try: timeout = aiohttp.ClientTimeout(total=30) async with aiohttp.ClientSession(timeout=timeout) as session: async with session.post(self.api_base_url, headers=headers, json=body) as response: if response.status == 401: return "β **Authentication Error**: Invalid API key. Please check your Chutes API token." elif response.status == 429: return "β³ **Rate Limit**: Too many requests. Please wait a moment and try again." elif response.status != 200: return f"β **API Error**: Request failed with status {response.status}" full_response = "" async for line in response.content: line = line.decode("utf-8").strip() if line.startswith("data: "): data = line[6:] if data == "[DONE]": break try: chunk_data = json.loads(data) if "choices" in chunk_data and len(chunk_data["choices"]) > 0: delta = chunk_data["choices"][0].get("delta", {}) content = delta.get("content", "") if content: full_response += content except json.JSONDecodeError: continue return full_response if full_response else "β οΈ No response received from the model." except asyncio.TimeoutError: return "β° **Timeout Error**: Request took too long. Please try again." except Exception as e: logger.error(f"API Error: {str(e)}") return f"β **Connection Error**: {str(e)}" def process_file(self, file_path: str) -> Tuple[pd.DataFrame, str, str]: """Enhanced file processing with better error handling""" try: file_extension = os.path.splitext(file_path)[1].lower() if file_extension == '.csv': for encoding in ['utf-8', 'latin-1', 'cp1252']: try: df = pd.read_csv(file_path, encoding=encoding) break except UnicodeDecodeError: continue else: raise ValueError("Could not decode CSV file. Please check file encoding.") elif file_extension in ['.xlsx', '.xls']: df = pd.read_excel(file_path) else: raise ValueError("Unsupported file format. Please upload CSV or Excel files.") df.columns = df.columns.str.strip().str.replace(r'\s+', ' ', regex=True) self.current_df = df data_summary = self.generate_enhanced_summary(df) charts_html = self.generate_visualizations(df) return df, data_summary, charts_html except Exception as e: raise Exception(f"Error processing file: {str(e)}") def generate_enhanced_summary(self, df: pd.DataFrame) -> str: """Generate comprehensive data summary with statistical insights""" summary = [] summary.append(f"# π Dataset Analysis Report") summary.append(f"**Generated**: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}") summary.append(f"**File Size**: {df.shape[0]:,} rows Γ {df.shape[1]} columns") memory_usage = df.memory_usage(deep=True).sum() / 1024**2 summary.append(f"**Memory Usage**: {memory_usage:.2f} MB\n") type_counts = df.dtypes.value_counts() summary.append("## π Column Types:") for dtype, count in type_counts.items(): summary.append(f"- **{dtype}**: {count} columns") missing_data = df.isnull().sum() missing_pct = (missing_data / len(df) * 100).round(2) missing_summary = missing_data[missing_data > 0].sort_values(ascending=False) if len(missing_summary) > 0: summary.append("\n## β οΈ Missing Data:") for col, count in missing_summary.head(10).items(): pct = missing_pct[col] summary.append(f"- **{col}**: {count:,} missing ({pct}%)") else: summary.append("\n## β Data Quality: No missing values detected!") numeric_cols = df.select_dtypes(include=[np.number]).columns if len(numeric_cols) > 0: summary.append(f"\n## π Numerical Columns Analysis ({len(numeric_cols)} columns):") for col in numeric_cols[:10]: stats = df[col].describe() outliers = len(df[df[col] > (stats['75%'] + 1.5 * (stats['75%'] - stats['25%']))]) summary.append(f"- **{col}**: ΞΌ={stats['mean']:.2f}, Ο={stats['std']:.2f}, outliers={outliers}") categorical_cols = df.select_dtypes(include=['object', 'category']).columns if len(categorical_cols) > 0: summary.append(f"\n## π Categorical Columns Analysis ({len(categorical_cols)} columns):") for col in categorical_cols[:10]: unique_count = df[col].nunique() cardinality = "High" if unique_count > len(df) * 0.9 else "Medium" if unique_count > 10 else "Low" most_common = df[col].mode().iloc[0] if len(df[col].mode()) > 0 else "N/A" summary.append(f"- **{col}**: {unique_count:,} unique values ({cardinality} cardinality), Top: '{most_common}'") summary.append("\n## π Data Sample (First 3 Rows):") sample_df = df.head(3) for idx, row in sample_df.iterrows(): summary.append(f"\n**Row {idx + 1}:**") for col, val in row.items(): summary.append(f" - {col}: {val}") return "\n".join(summary) def generate_visualizations(self, df: pd.DataFrame) -> str: """Generate comprehensive visualizations for the dataset""" charts_html = [] try: missing_data = df.isnull().sum() if missing_data.sum() > 0: fig = px.bar( x=missing_data.index, y=missing_data.values, title="π Missing Data Analysis", labels={'x': 'Columns', 'y': 'Missing Values Count'}, color=missing_data.values, color_continuous_scale='Reds' ) fig.update_layout( height=400, showlegend=False, title_x=0.5, xaxis_tickangle=-45 ) charts_html.append(f"<h3>π Data Quality Overview</h3>") charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="missing_data_chart")) numeric_cols = df.select_dtypes(include=[np.number]).columns if len(numeric_cols) > 1: corr_matrix = df[numeric_cols].corr() fig = px.imshow( corr_matrix, title="π Correlation Matrix - Numerical Variables", color_continuous_scale='RdBu_r', aspect="auto", text_auto=True ) fig.update_layout(height=500, title_x=0.5) charts_html.append(f"<h3>π Correlation Analysis</h3>") charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="correlation_chart")) if len(numeric_cols) > 0: for i, col in enumerate(numeric_cols[:3]): fig = px.histogram( df, x=col, title=f"π Distribution: {col}", marginal="box", nbins=30 ) fig.update_layout(height=400, title_x=0.5) if i == 0: charts_html.append(f"<h3>π Data Distributions</h3>") charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"dist_chart_{i}")) categorical_cols = df.select_dtypes(include=['object', 'category']).columns if len(categorical_cols) > 0: for i, col in enumerate(categorical_cols[:2]): if df[col].nunique() <= 20: value_counts = df[col].value_counts().head(10) fig = px.bar( x=value_counts.values, y=value_counts.index, orientation='h', title=f"π Top 10 Values: {col}", labels={'x': 'Count', 'y': col} ) fig.update_layout(height=400, title_x=0.5) if i == 0: charts_html.append(f"<h3>π Categorical Data Analysis</h3>") charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id=f"cat_chart_{i}")) summary_data = { 'Metric': ['Total Rows', 'Total Columns', 'Numeric Columns', 'Categorical Columns', 'Missing Values'], 'Count': [ len(df), len(df.columns), len(numeric_cols), len(categorical_cols), df.isnull().sum().sum() ] } fig = px.bar( summary_data, x='Metric', y='Count', title="π Dataset Overview", color='Count', color_continuous_scale='Blues' ) fig.update_layout(height=400, title_x=0.5, showlegend=False) charts_html.append(f"<h3>π Dataset Overview</h3>") charts_html.append(fig.to_html(include_plotlyjs='cdn', div_id="overview_chart")) self.current_charts = charts_html return "\n".join(charts_html) if charts_html else "<p>No charts could be generated for this dataset.</p>" except Exception as e: logger.error(f"Chart generation error: {str(e)}") return f"<p>β Chart generation failed: {str(e)}</p>" def generate_report_html(self, analysis_text: str, data_summary: str, file_name: str = "Unknown") -> str: """Generate HTML report with properly formatted text and print button""" html_template = """ <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title>Data Analysis Report</title> <style> body { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; line-height: 1.6; color: #333; max-width: 1200px; margin: 0 auto; padding: 20px; background: #f8f9fa; } .header { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 30px; border-radius: 10px; margin-bottom: 30px; text-align: center; } .section { background: white; padding: 25px; margin-bottom: 20px; border-radius: 8px; box-shadow: 0 2px 10px rgba(0,0,0,0.1); } .chart-container { margin: 20px 0; padding: 15px; background: #f8f9ff; border-radius: 8px; border-left: 4px solid #667eea; } h1, h2, h3 { color: #2c3e50; margin-top: 20px; margin-bottom: 15px; } .metadata { background: #e8f4f8; padding: 15px; border-radius: 5px; margin-bottom: 20px; } .footer { text-align: center; color: #666; margin-top: 40px; padding: 20px; background: #f1f1f1; border-radius: 5px; } pre { background: #f4f4f4; padding: 15px; border-radius: 5px; overflow-x: auto; white-space: pre-wrap; font-size: 14px; } strong { color: #2c3e50; font-weight: 600; } table { width: 100%; border-collapse: collapse; margin: 20px 0; } th, td { border: 1px solid #ddd; padding: 8px; text-align: left; } th { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; } tr:nth-child(even) { background-color: #f2f2f2; } .print-button { background: #667eea; color: white; padding: 10px 20px; border: none; border-radius: 5px; cursor: pointer; font-size: 16px; margin: 10px 0; display: inline-block; } .print-button:hover { background: #764ba2; } @media print { .print-button { display: none; } body { background: white; } .section, .metadata, .footer { box-shadow: none; } } </style> <script> function printReport() { window.print(); } </script> </head> <body> <div class="header"> <h1>π Smart Data Analysis Report</h1> <p>Comprehensive AI-Powered Data Insights</p> </div> <div class="metadata"> <strong>π File:</strong> {{ file_name }}<br> <strong>π Generated:</strong> {{ timestamp }}<br> <strong>π€ Model:</strong> OpenAI gpt-oss-20b </div> <div class="section"> <h2>π― AI Analysis & Insights</h2> <button class="print-button" onclick="printReport()">π¨οΈ Print as PDF</button> <div>{{ ai_analysis }}</div> </div> <div class="section"> <h2>π Visualizations</h2> <div class="chart-container"> {{ charts_html }} </div> </div> <div class="section"> <h2>π Technical Data Summary</h2> <pre>{{ data_summary }}</pre> </div> <div class="footer"> <p>Report generated by Smart Data Analyzer Pro β’ Powered by Smart AI</p> <p>For questions or support, contact +8801719296601 (via Whatsapp)</p> </div> </body> </html> """ template = Template(html_template) ai_analysis_html = markdown.markdown(analysis_text, extensions=['extra', 'tables']) charts_content = "\n".join(self.current_charts) if self.current_charts else "<p>No visualizations available</p>" return template.render( file_name=file_name, timestamp=datetime.now().strftime('%Y-%m-%d %H:%M:%S'), ai_analysis=ai_analysis_html, charts_html=charts_content, data_summary=data_summary ) analyzer = EnhancedDataAnalyzer() async def analyze_data(file, api_key, user_question="", progress=gr.Progress()): if not file: return "β Please upload a CSV or Excel file.", "", "", "", None if not analyzer.validate_api_key(api_key): return "β Please enter a valid Chutes API key (minimum 10 characters).", "", "", "", None is_valid, validation_msg = analyzer.validate_file(file) if not is_valid: return f"β {validation_msg}", "", "", "", None progress(0.1, desc="π Reading file...") try: df, data_summary, charts_html = analyzer.process_file(file.name) progress(0.3, desc="π Processing data...") progress(0.5, desc="π€ Generating AI insights...") ai_analysis = await analyzer.analyze_with_chutes(api_key, data_summary, user_question) progress(0.9, desc="β¨ Finalizing results...") response = f"""# π― Analysis Complete! {ai_analysis} --- *Analysis powered by OpenAI gpt-oss-20b via Chutes β’ Generated at {datetime.now().strftime('%H:%M:%S')}* """ data_preview_html = df.head(15).to_html( classes="table table-striped table-hover", table_id="data-preview-table", escape=False ) styled_preview = f""" <style> #data-preview-table {{ width: 100%; border-collapse: collapse; margin: 20px 0; font-size: 14px; }} #data-preview-table th {{ background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); color: white; padding: 12px 8px; text-align: left; font-weight: bold; }} #data-preview-table td {{ padding: 10px 8px; border-bottom: 1px solid #ddd; }} #data-preview-table tr:hover {{ background-color: #f5f5f5; }} </style> {data_preview_html} """ progress(1.0, desc="β Done!") return response, data_summary, styled_preview, charts_html, file.name except Exception as e: logger.error(f"Analysis error: {str(e)}") return f"β **Error**: {str(e)}", "", "", "", None def sync_analyze_data(file, api_key, user_question="", progress=gr.Progress()): return asyncio.run(analyze_data(file, api_key, user_question, progress)) def clear_all(): analyzer.current_df = None analyzer.current_charts = None return None, "", "", "", "", "", "", None def download_report(analysis_text, data_summary, file_name, format_choice): if not analysis_text: return None, "β No analysis data available for download." timestamp = datetime.now().strftime('%Y%m%d_%H%M%S') file_base_name = os.path.splitext(file_name)[0] if file_name else "data_analysis" try: if format_choice == "HTML": html_content = analyzer.generate_report_html(analysis_text, data_summary, file_name) filename = f"{file_base_name}_analysis_report_{timestamp}.html" with open(filename, 'w', encoding='utf-8') as f: f.write(html_content) return filename, f"β HTML report generated successfully! File: {filename}" else: # Markdown report = f"""# Data Analysis Report Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} File: {file_name} ## AI Analysis: {analysis_text} ## Raw Data Summary: {data_summary} """ filename = f"{file_base_name}_analysis_report_{timestamp}.md" with open(filename, 'w', encoding='utf-8') as f: f.write(report) return filename, f"β Markdown report generated successfully! File: {filename}" except Exception as e: logger.error(f"Report generation error: {str(e)}") return None, f"β Error generating report: {str(e)}" with gr.Blocks( title="π Smart Data Analyzer Pro", theme=gr.themes.Ocean(), css=""" .gradio-container { font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif; } .tab-nav { background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); } .upload-area { border: 2px dashed #667eea; border-radius: 10px; padding: 20px; text-align: center; background: #f8f9ff; } """ ) as app: current_file_name = gr.State("") gr.Markdown(""" # π Smart Data Analyzer Pro ### AI-Powered Excel & CSV Analysis with OpenAI gpt-oss-20b Upload your data files and get instant professional insights and downloadable reports! """) with gr.Row(): with gr.Column(scale=1): gr.Markdown("### βοΈ Configuration") api_key_input = gr.Textbox( label="π Chutes API Key", placeholder="sk-chutes-your-api-key-here...", type="password", lines=1, info="Get your free API key from chutes.ai" ) file_input = gr.File( label="π Upload Data File", file_types=[".csv", ".xlsx", ".xls"], file_count="single", elem_classes=["upload-area"] ) with gr.Row(): analyze_btn = gr.Button("π Analyze Data", variant="primary", size="lg") clear_btn = gr.Button("ποΈ Clear All", variant="secondary") with gr.Group(): gr.Markdown("### π Quick Stats") file_stats = gr.Textbox( label="File Information", lines=3, interactive=False, placeholder="Upload a file to see statistics..." ) with gr.Column(scale=2): gr.Markdown("### π― Analysis Results") analysis_output = gr.Markdown( value="π **Ready to analyze your data!**\n\nUpload a CSV or Excel file and click 'Analyze Data' to get started.", show_label=False ) with gr.Tabs(): with gr.Tab("π¬ Ask Questions"): question_input = gr.Textbox( label="β Ask Specific Questions About Your Data", placeholder="Examples:\nβ’ What are the top 5 customers by revenue?\nβ’ Are there any seasonal trends?\nβ’ Which products have the highest margins?\nβ’ What anomalies do you see in this data?", lines=3 ) ask_btn = gr.Button("π Get Answer", variant="primary") question_output = gr.Markdown() with gr.Tab("π Data Preview"): data_preview = gr.HTML( label="Dataset Preview", value="<p>Upload a file to see data preview...</p>" ) with gr.Tab("π Raw Summary"): raw_summary = gr.Textbox( label="Detailed Data Summary", lines=15, max_lines=20, show_copy_button=True ) with gr.Tab("πΎ Export Reports"): gr.Markdown("### π₯ Download Your Analysis Report") with gr.Row(): format_choice = gr.Radio( choices=["HTML", "Markdown"], value="HTML", label="π Report Format", info="Choose your preferred download format" ) download_btn = gr.Button("π₯ Generate & Download Report", variant="primary", size="lg") download_status = gr.Textbox(label="Download Status", interactive=False) download_file = gr.File(label="π Download Link", visible=True) def update_file_stats(file): if not file: return "No file uploaded" try: file_size = os.path.getsize(file.name) / (1024 * 1024) file_name = os.path.basename(file.name) return f"π **File**: {file_name}\nπ **Size**: {file_size:.2f} MB\nβ° **Uploaded**: {datetime.now().strftime('%H:%M:%S')}" except: return "File information unavailable" def handle_analysis(file, api_key, user_question="", progress=gr.Progress()): result = sync_analyze_data(file, api_key, user_question, progress) if len(result) == 5: return result[0], result[1], result[2], result[4] else: return result[0], result[1], result[2], "" def handle_question_analysis(file, api_key, question, progress=gr.Progress()): if not question.strip(): return "β Please enter a specific question about your data." result = sync_analyze_data(file, api_key, question, progress) return result[0] analyze_btn.click( fn=handle_analysis, inputs=[file_input, api_key_input, gr.Textbox(value="", visible=False)], outputs=[analysis_output, raw_summary, data_preview, current_file_name], show_progress=True ) ask_btn.click( fn=handle_question_analysis, inputs=[file_input, api_key_input, question_input], outputs=[question_output], show_progress=True ) file_input.change( fn=update_file_stats, inputs=[file_input], outputs=[file_stats] ) clear_btn.click( fn=clear_all, outputs=[file_input, api_key_input, question_input, analysis_output, question_output, data_preview, raw_summary, current_file_name] ) download_btn.click( fn=download_report, inputs=[analysis_output, raw_summary, current_file_name, format_choice], outputs=[download_file, download_status] ) gr.Markdown(""" --- ### π‘ Pro Tips for Better Analysis: **π― For Best Results:** - Clean your data before upload (remove extra headers, format dates consistently) - Use descriptive column names - Ask specific questions like "What drives the highest profits?" instead of "Analyze this data" **π₯ Export Options:** - **HTML**: Interactive report with embedded charts and print-to-PDF option - **Markdown**: Simple text format for documentation **β‘ Speed Optimization:** - Files under 10MB process fastest - CSV files typically load faster than Excel - Limit to essential columns for quicker analysis **π§ Supported Formats:** CSV, XLSX, XLS | **π Max Size:** 50MB | **π Response Time:** ~3-5 seconds """) if __name__ == "__main__": app.queue(max_size=10) app.launch() |