File size: 9,425 Bytes
d513747 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
import gradio as gr import pandas as pd import aiohttp import asyncio import json import io import os from typing import Optional, Tuple class DataAnalyzer: def __init__(self): self.api_base_url = "https://llm.chutes.ai/v1/chat/completions" async def analyze_with_chutes(self, api_token: str, data_summary: str, user_question: str = None) -> str: """Send data to Chutes API for analysis""" headers = { "Authorization": f"Bearer {api_token}", "Content-Type": "application/json" } # Create the prompt based on whether it's initial analysis or follow-up question if user_question: prompt = f"""Based on this dataset summary: {data_summary} User question: {user_question} Please provide a detailed answer based on the data.""" else: prompt = f"""Analyze the following dataset and provide comprehensive insights: {data_summary} Please provide: 1. Key statistical insights 2. Notable patterns or trends 3. Data quality observations 4. Business recommendations 5. Potential areas for further analysis Keep the analysis clear, actionable, and data-driven.""" body = { "model": "openai/gpt-oss-20b", "messages": [ { "role": "user", "content": prompt } ], "stream": True, "max_tokens": 2048, "temperature": 0.3 # Lower temperature for more consistent analysis } try: async with aiohttp.ClientSession() as session: async with session.post(self.api_base_url, headers=headers, json=body) as response: if response.status != 200: return f"Error: API request failed with status {response.status}" full_response = "" async for line in response.content: line = line.decode("utf-8").strip() if line.startswith("data: "): data = line[6:] if data == "[DONE]": break try: chunk_data = json.loads(data) if "choices" in chunk_data and len(chunk_data["choices"]) > 0: delta = chunk_data["choices"][0].get("delta", {}) content = delta.get("content", "") if content: full_response += content except json.JSONDecodeError: continue return full_response if full_response else "No response received from the model." except Exception as e: return f"Error connecting to Chutes API: {str(e)}" def process_file(self, file_path: str) -> Tuple[pd.DataFrame, str]: """Process uploaded CSV or Excel file""" try: file_extension = os.path.splitext(file_path)[1].lower() if file_extension == '.csv': df = pd.read_csv(file_path) elif file_extension in ['.xlsx', '.xls']: df = pd.read_excel(file_path) else: raise ValueError("Unsupported file format. Please upload CSV or Excel files.") # Generate comprehensive data summary summary = self.generate_data_summary(df) return df, summary except Exception as e: raise Exception(f"Error processing file: {str(e)}") def generate_data_summary(self, df: pd.DataFrame) -> str: """Generate a comprehensive summary of the dataset""" summary = [] # Basic info summary.append(f"Dataset Overview:") summary.append(f"- Shape: {df.shape[0]} rows Γ {df.shape[1]} columns") summary.append(f"- Total cells: {df.shape[0] * df.shape[1]:,}") # Column information summary.append(f"\nColumn Information:") for i, (col, dtype) in enumerate(df.dtypes.items()): null_count = df[col].isnull().sum() null_pct = (null_count / len(df)) * 100 summary.append(f"- {col} ({dtype}): {null_count} nulls ({null_pct:.1f}%)") # Numerical columns statistics numeric_cols = df.select_dtypes(include=['number']).columns if len(numeric_cols) > 0: summary.append(f"\nNumerical Columns Summary:") for col in numeric_cols: stats = df[col].describe() summary.append(f"- {col}: Mean={stats['mean']:.2f}, Std={stats['std']:.2f}, Range=[{stats['min']:.2f}, {stats['max']:.2f}]") # Categorical columns categorical_cols = df.select_dtypes(include=['object', 'category']).columns if len(categorical_cols) > 0: summary.append(f"\nCategorical Columns Summary:") for col in categorical_cols: unique_count = df[col].nunique() most_common = df[col].mode().iloc[0] if len(df[col].mode()) > 0 else "N/A" summary.append(f"- {col}: {unique_count} unique values, Most common: '{most_common}'") # Sample data summary.append(f"\nFirst 5 rows preview:") summary.append(df.head().to_string()) return "\n".join(summary) # Initialize the analyzer analyzer = DataAnalyzer() async def analyze_data(file, api_key, user_question=""): """Main function to analyze uploaded data""" if not file: return "Please upload a CSV or Excel file.", "", "" if not api_key: return "Please enter your Chutes API key.", "", "" try: # Process the uploaded file df, data_summary = analyzer.process_file(file.name) # Get AI analysis ai_analysis = await analyzer.analyze_with_chutes(api_key, data_summary, user_question) # Format the complete response response = f"""## π Data Analysis Complete! ### π Dataset Overview: {data_summary} ### π€ AI Insights & Recommendations: {ai_analysis} """ return response, data_summary, df.head(10).to_html() except Exception as e: return f"Error: {str(e)}", "", "" def sync_analyze_data(file, api_key, user_question=""): """Synchronous wrapper for the async analyze function""" return asyncio.run(analyze_data(file, api_key, user_question)) # Create the Gradio interface with gr.Blocks(title="π Smart Data Analyzer", theme=gr.themes.Ocean()) as app: gr.Markdown(""" # π Smart Data Analyzer ### Upload your CSV/Excel file and get instant AI-powered insights using OpenAI's gpt-oss-20b model via Chutes! """) with gr.Row(): with gr.Column(scale=1): # File upload file_input = gr.File( label="π Upload CSV or Excel File", file_types=[".csv", ".xlsx", ".xls"], file_count="single" ) # API key input api_key_input = gr.Textbox( label="π Chutes API Key", placeholder="Enter your Chutes API token here...", type="password", lines=1 ) # Optional question input question_input = gr.Textbox( label="β Ask a Specific Question (Optional)", placeholder="e.g., What are the sales trends? Which region performs best?", lines=2 ) # Analyze button analyze_btn = gr.Button("π Analyze Data", variant="primary", size="lg") with gr.Column(scale=2): # Results display analysis_output = gr.Markdown( label="π Analysis Results", value="Upload a file and click 'Analyze Data' to see insights..." ) # Additional outputs (hidden by default) with gr.Accordion("π Data Preview", open=False): data_preview = gr.HTML(label="First 10 Rows") with gr.Accordion("π Raw Data Summary", open=False): raw_summary = gr.Textbox(label="Dataset Summary", lines=10) # Event handlers analyze_btn.click( fn=sync_analyze_data, inputs=[file_input, api_key_input, question_input], outputs=[analysis_output, raw_summary, data_preview] ) # Example section gr.Markdown(""" ### π‘ Tips for Best Results: - **File Size**: Keep files under 10MB for fastest processing - **API Key**: Get your free Chutes API key from [chutes.ai](https://chutes.ai) - **Questions**: Be specific! Ask about trends, patterns, outliers, or recommendations - **Formats**: Supports CSV, XLSX, and XLS files ### π― Example Questions to Ask: - "What are the key trends in this sales data?" - "Which products are underperforming?" - "Are there any seasonal patterns?" - "What recommendations do you have based on this data?" """) # Launch the application if __name__ == "__main__": app.launch( share=True ) |