File size: 18,146 Bytes
2b051f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
import gradio as gr import base64 import io import os from openai import OpenAI import PyPDF2 import speech_recognition as sr import tempfile from pydub import AudioSegment from typing import List, Tuple, Optional class MultimodalChatbot: def __init__(self, api_key: str): self.client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=api_key, ) self.model = "google/gemma-3n-e2b-it:free" self.conversation_history = [] def extract_pdf_text(self, pdf_file) -> str: """Extract text from PDF file""" try: if hasattr(pdf_file, 'name'): pdf_path = pdf_file.name else: pdf_path = pdf_file text = "" with open(pdf_path, 'rb') as file: pdf_reader = PyPDF2.PdfReader(file) for page_num, page in enumerate(pdf_reader.pages): page_text = page.extract_text() if page_text.strip(): text += f"Page {page_num + 1}:\n{page_text}\n\n" return text.strip() if text.strip() else "No text could be extracted from this PDF." except Exception as e: return f"Error extracting PDF: {str(e)}" def convert_audio_to_wav(self, audio_file) -> str: """Convert audio file to WAV format for speech recognition""" try: if hasattr(audio_file, 'name'): audio_path = audio_file.name else: audio_path = audio_file file_ext = os.path.splitext(audio_path)[1].lower() if file_ext == '.wav': return audio_path audio = AudioSegment.from_file(audio_path) wav_path = tempfile.mktemp(suffix='.wav') audio.export(wav_path, format="wav", parameters=["-ac", "1", "-ar", "16000"]) return wav_path except Exception as e: raise Exception(f"Error converting audio: {str(e)}") def transcribe_audio(self, audio_file) -> str: """Transcribe audio file to text""" try: recognizer = sr.Recognizer() wav_path = self.convert_audio_to_wav(audio_file) with sr.AudioFile(wav_path) as source: recognizer.adjust_for_ambient_noise(source, duration=0.2) audio_data = recognizer.record(source) try: text = recognizer.recognize_google(audio_data) return text except sr.UnknownValueError: return "Could not understand the audio. Please try with clearer audio." except sr.RequestError as e: try: text = recognizer.recognize_sphinx(audio_data) return text except: return f"Speech recognition service error: {str(e)}" except Exception as e: return f"Error transcribing audio: {str(e)}" def create_multimodal_message(self, text_input: str = "", pdf_file=None, audio_file=None) -> dict: """Create a multimodal message for the API""" content_parts = [] processing_info = [] if text_input: content_parts.append({"type": "text", "text": text_input}) if pdf_file is not None: pdf_text = self.extract_pdf_text(pdf_file) content_parts.append({ "type": "text", "text": f"PDF Content:\n{pdf_text}" }) processing_info.append("π PDF processed") if audio_file is not None: audio_text = self.transcribe_audio(audio_file) content_parts.append({ "type": "text", "text": f"Audio Transcription:\n{audio_text}" }) processing_info.append("π€ Audio transcribed") return {"role": "user", "content": content_parts}, processing_info def chat(self, text_input: str = "", pdf_file=None, audio_file=None, history: List[Tuple[str, str]] = None) -> Tuple[List[Tuple[str, str]], str]: """Main chat function""" if history is None: history = [] try: user_message_parts = [] if text_input: user_message_parts.append(f"Text: {text_input}") if pdf_file: user_message_parts.append("π PDF uploaded") if audio_file: user_message_parts.append("π€ Audio uploaded") user_display = " | ".join(user_message_parts) user_message, processing_info = self.create_multimodal_message( text_input, pdf_file, audio_file ) if processing_info: user_display += f"\n{' | '.join(processing_info)}" messages = [user_message] completion = self.client.chat.completions.create( extra_headers={ "HTTP-Referer": "https://multimodal-chatbot.local", "X-Title": "Multimodal Chatbot", }, model=self.model, messages=messages, max_tokens=2048, temperature=0.7 ) bot_response = completion.choices[0].message.content history.append((user_display, bot_response)) return history, "" except Exception as e: error_msg = f"Error: {str(e)}" history.append((user_display if 'user_display' in locals() else "Error in input", error_msg)) return history, "" def create_interface(): """Create the Gradio interface""" with gr.Blocks(title="Multimodal Chatbot with Gemma 3n", theme=gr.themes.Soft()) as demo: gr.Markdown(""" # π€ Multimodal Chatbot with Gemma 3n This chatbot can process multiple types of input: - **Text**: Regular text messages - **PDF**: Extract and analyze document content - **Audio**: Transcribe speech to text (supports WAV, MP3, M4A, FLAC) **Setup**: Enter your OpenRouter API key below to get started """) with gr.Row(): with gr.Column(): api_key_input = gr.Textbox( label="π OpenRouter API Key", placeholder="Enter your OpenRouter API key here...", type="password", info="Your API key is not stored and only used for this session" ) api_status = gr.Textbox( label="Connection Status", value="β API Key not provided", interactive=False ) with gr.Tabs(): with gr.TabItem("π¬ Text Chat"): with gr.Row(): with gr.Column(scale=1): text_input = gr.Textbox( label="π¬ Text Input", placeholder="Type your message here...", lines=5 ) text_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False) text_clear_btn = gr.Button("ποΈ Clear", variant="secondary") with gr.Column(scale=2): text_chatbot = gr.Chatbot( label="Text Chat History", height=600, bubble_full_width=False, show_copy_button=True ) with gr.TabItem("π PDF Chat"): with gr.Row(): with gr.Column(scale=1): pdf_input = gr.File( label="π PDF Upload", file_types=[".pdf"], type="filepath" ) pdf_text_input = gr.Textbox( label="π¬ Question about PDF", placeholder="Ask something about the PDF...", lines=3 ) pdf_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False) pdf_clear_btn = gr.Button("ποΈ Clear", variant="secondary") with gr.Column(scale=2): pdf_chatbot = gr.Chatbot( label="PDF Chat History", height=600, bubble_full_width=False, show_copy_button=True ) with gr.TabItem("π€ Audio Chat"): with gr.Row(): with gr.Column(scale=1): audio_input = gr.File( label="π€ Audio Upload", file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"], type="filepath" ) audio_text_input = gr.Textbox( label="π¬ Question about Audio", placeholder="Ask something about the audio...", lines=3 ) audio_submit_btn = gr.Button("π Send", variant="primary", size="lg", interactive=False) audio_clear_btn = gr.Button("ποΈ Clear", variant="secondary") with gr.Column(scale=2): audio_chatbot = gr.Chatbot( label="Audio Chat History", height=600, bubble_full_width=False, show_copy_button=True ) with gr.TabItem("π Combined Chat"): with gr.Row(): with gr.Column(scale=1): combined_text_input = gr.Textbox( label="π¬ Text Input", placeholder="Type your message here...", lines=3 ) combined_pdf_input = gr.File( label="π PDF Upload", file_types=[".pdf"], type="filepath" ) combined_audio_input = gr.File( label="π€ Audio Upload", file_types=[".wav", ".mp3", ".m4a", ".flac", ".ogg"], type="filepath" ) combined_submit_btn = gr.Button("π Send All", variant="primary", size="lg", interactive=False) combined_clear_btn = gr.Button("ποΈ Clear All", variant="secondary") with gr.Column(scale=2): combined_chatbot = gr.Chatbot( label="Combined Chat History", height=600, bubble_full_width=False, show_copy_button=True ) def validate_api_key(api_key): if not api_key or len(api_key.strip()) == 0: return "β API Key not provided", *[gr.update(interactive=False) for _ in range(4)] try: test_client = OpenAI( base_url="https://openrouter.ai/api/v1", api_key=api_key.strip(), ) return "β API Key validated successfully", *[gr.update(interactive=True) for _ in range(4)] except Exception as e: return f"β API Key validation failed: {str(e)}", *[gr.update(interactive=False) for _ in range(4)] def process_text_input(api_key, text, history): if not api_key or len(api_key.strip()) == 0: if history is None: history = [] history.append(("Error", "β Please provide a valid API key first")) return history, "" chatbot = MultimodalChatbot(api_key.strip()) return chatbot.chat(text_input=text, history=history) def process_pdf_input(api_key, pdf, text, history): if not api_key or len(api_key.strip()) == 0: if history is None: history = [] history.append(("Error", "β Please provide a valid API key first")) return history, "" chatbot = MultimodalChatbot(api_key.strip()) return chatbot.chat(text_input=text, pdf_file=pdf, history=history) def process_audio_input(api_key, audio, text, history): if not api_key or len(api_key.strip()) == 0: if history is None: history = [] history.append(("Error", "β Please provide a valid API key first")) return history, "" chatbot = MultimodalChatbot(api_key.strip()) return chatbot.chat(text_input=text, audio_file=audio, history=history) def process_combined_input(api_key, text, pdf, audio, history): if not api_key or len(api_key.strip()) == 0: if history is None: history = [] history.append(("Error", "β Please provide a valid API key first")) return history, "" chatbot = MultimodalChatbot(api_key.strip()) return chatbot.chat(text, pdf, audio, history) def clear_chat(): return [], "" def clear_all_inputs(): return [], "", None, None api_key_input.change( validate_api_key, inputs=[api_key_input], outputs=[api_status, text_submit_btn, pdf_submit_btn, audio_submit_btn, combined_submit_btn] ) text_submit_btn.click( process_text_input, inputs=[api_key_input, text_input, text_chatbot], outputs=[text_chatbot, text_input] ) text_input.submit( process_text_input, inputs=[api_key_input, text_input, text_chatbot], outputs=[text_chatbot, text_input] ) text_clear_btn.click(clear_chat, outputs=[text_chatbot, text_input]) pdf_submit_btn.click( process_pdf_input, inputs=[api_key_input, pdf_input, pdf_text_input, pdf_chatbot], outputs=[pdf_chatbot, pdf_text_input] ) pdf_clear_btn.click(lambda: ([], "", None), outputs=[pdf_chatbot, pdf_text_input, pdf_input]) audio_submit_btn.click( process_audio_input, inputs=[api_key_input, audio_input, audio_text_input, audio_chatbot], outputs=[audio_chatbot, audio_text_input] ) audio_clear_btn.click(lambda: ([], "", None), outputs=[audio_chatbot, audio_text_input, audio_input]) combined_submit_btn.click( process_combined_input, inputs=[api_key_input, combined_text_input, combined_pdf_input, combined_audio_input, combined_chatbot], outputs=[combined_chatbot, combined_text_input] ) combined_clear_btn.click(clear_all_inputs, outputs=[combined_chatbot, combined_text_input, combined_pdf_input, combined_audio_input]) gr.Markdown(""" ### π― How to Use Each Tab: **π¬ Text Chat**: Simple text conversations with the AI **π PDF Chat**: Upload a PDF and ask questions about its content **π€ Audio Chat**: Upload audio files for transcription and analysis - Supports: WAV, MP3, M4A, FLAC, OGG formats - Best results with clear speech and minimal background noise **π Combined Chat**: Use multiple input types together for comprehensive analysis ### π Getting an API Key: 1. Go to [OpenRouter.ai](https://openrouter.ai) 2. Sign up for an account 3. Navigate to the API Keys section 4. Create a new API key 5. Copy and paste it in the field above ### β οΈ Current Limitations: - Audio transcription requires internet connection for best results - Large files may take longer to process """) return demo if __name__ == "__main__": required_packages = [ "gradio", "openai", "PyPDF2", "SpeechRecognition", "pydub" ] print("π Multimodal Chatbot with Gemma 3n") print("=" * 50) print("Required packages:", ", ".join(required_packages)) print("\nπ¦ To install: pip install " + " ".join(required_packages)) print("\nπ€ For audio processing, you may also need:") print(" - ffmpeg (for audio conversion)") print(" - sudo apt-get install espeak espeak-data libespeak1 libespeak-dev (for offline speech recognition)") print("\nπ Get your API key from: https://openrouter.ai") print("π‘ Enter your API key in the web interface when it loads") demo = create_interface() demo.launch( share=True ) |