import gradio as gr import os import re import time import base64 # image has to be converted to base64 from openai import OpenAI #openrouter access from together import Together from PIL import Image #pillow for image processing import io ### function to create math solution from math problem text def generate_math_solution_openrouter(api_key, problem_text, history=None): if not api_key.strip(): return "Please enter your OpenRouter API key.", history if not problem_text.strip(): return "Please enter a math problem so that I can solve it for you!", try: client=OpenAI( base_url="https://openrouter.ai/api/v1", api_key=api_key, ) messages= [ {"role": "system", "content": """You are an expert math tutor who explains concepts clearly and thoroughly. Analyze the given math problem and provide a detailed step-by-step solution. For each step: 1. Show the mathematical operation 2. Explain why this step is necessary 3. Connect it to relevant mathematical concepts Format your response with clear section headers using markdown. Begin with an "Initial Analysis" section, follow with numbered steps, and conclude with a "Final Answer" section."""}, ] if history: for exchange in history: messages.append({"role": "user", "content": exchange[0]}) #asks a math prob if exchange[1]: # Check if there's a response messages.append({"role": "assistant", "content": exchange[1]}) #AI responses with a solution # Add the current problem messages.append({"role": "user", "content": f"Solve this math problem step-by-step: {problem_text}"}) # Create the completion completion = client.chat.completions.create( model="deepseek/deepseek-r1-0528:free", messages=messages, extra_headers={ "HTTP-Referer": "https://advancedmathtutor.edu", "X-Title": "Advanced Math Tutor", } ) solution=completion.choices[0].message.content # Update history if history is None: #no convo history = [] #my all convo saved here history.append((problem_text, solution)) #now i update my convo history return solution, history except Exception as e: error_message = f"Error: {str(e)}" return error_message, history #image processing def image_to_base64(image_path): if image_path is None: return None try: with open(image_path, "rb") as img_file: return base64.b64encode(img_file.read()).decode("utf-8") except Exception as e: print(f"Error converting image to base64: {str(e)}") return None #### function for a math problem that uses image data (Together) def generate_math_solution_together(api_key, problem_text, image_path=None, history=None): if not api_key.strip(): return "Please enter your Together AI API key.", history if not problem_text.strip() and image_path is None: return "Please enter a math problem or upload an image of a math problem.", history try: client = Together(api_key=api_key) messages= [ {"role": "system", "content": """You are an expert math tutor who explains concepts clearly and thoroughly. Analyze the given math problem and provide a detailed step-by-step solution. For each step: 1. Show the mathematical operation 2. Explain why this step is necessary 3. Connect it to relevant mathematical concepts Format your response with clear section headers using markdown. Begin with an "Initial Analysis" section, follow with numbered steps, and conclude with a "Final Answer" section."""}, ] # Add conversation history if it exists if history: for exchange in history: messages.append({"role": "user", "content": exchange[0]}) if exchange[1]: # Check if there's a response messages.append({"role": "assistant", "content": exchange[1]}) # Prepare the user message content user_message_content = [] # WE are going to add some instructions regarding how to solve the math problem in the image # calculate the area of a circle with radius 6 cm (Image of a problem) #problem text / user message = Before calculating area convert radius of 6 cm to meter first # Add text content if provided if problem_text.strip(): #image+instruction user_message_content.append({ "type": "text", "text": f"Solve this math problem: {problem_text}" #Before calculating area convert radius of 6 cm to meter first }) else: #image user_message_content.append({ "type": "text", "text": "Solve this math problem from the image:" }) # Add image if provided if image_path: # Convert image to base64 base64_image = image_to_base64(image_path) if base64_image: user_message_content.append({ "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } }) # Add the user message with content messages.append({ "role": "user", #conversation saved with image data+usermessage/instruction "content": user_message_content }) response=client.chat.completions.create( #TOgether model="meta-llama/Llama-Vision-Free", messages=messages, stream=False ) solution=response.choices[0].message.content #problem----> ans syntax # Update history - for simplicity, just store the text problem if history is None: history = [] history.append((problem_text if problem_text.strip() else "Image problem", solution)) return solution, history except Exception as e: error_message = f"Error: {str(e)}" return error_message, history def create_demo(): #interface design complete with gr.Blocks(theme=gr.themes.Ocean(primary_hue="blue")) as demo: gr.Markdown("# 📚 Advanced Math Tutor") gr.Markdown(""" This application provides step-by-step solutions to math problems using advanced AI models. Choose between OpenRouter's Phi-4-reasoning-plus for text-based problems or Together AI's Llama-Vision for problems with images. """) with gr.Tabs(): with gr.TabItem("Text Problem Solver (OpenRouter)"): with gr.Row(): with gr.Column(scale=1): #left side column design complete openrouter_api_key = gr.Textbox( label="OpenRouter API Key", placeholder="Enter your OpenRouter API key (starts with sk-or-)", type="password" ) text_problem_input = gr.Textbox( label="Math Problem", placeholder="Enter your math problem here...", #Solve the quadratic equation: 3x² + 5x - 2 = 0" lines=5 ) example_problems = gr.Examples( examples=[ ["Solve the quadratic equation: 3x² + 5x - 2 = 0"], ["Find the derivative of f(x) = x³ln(x)"], ["Calculate the area of a circle with radius 5 cm"], ["Find all values of x that satisfy the equation: log₂(x-1) + log₂(x+3) = 5"] ], inputs=[text_problem_input], label="Example Problems" ) with gr.Row(): openrouter_submit_btn = gr.Button("Solve Problem", variant="primary") openrouter_clear_btn = gr.Button("Clear") with gr.Column(scale=2): openrouter_solution_output = gr.Markdown(label="Solution") # Store conversation history (invisible to user) openrouter_conversation_history = gr.State(value=None) # Button actions openrouter_submit_btn.click( fn=generate_math_solution_openrouter, #text problem solve inputs=[openrouter_api_key, text_problem_input, openrouter_conversation_history], outputs=[openrouter_solution_output, openrouter_conversation_history] ) openrouter_clear_btn.click( fn=lambda: ("", None), inputs=[], outputs=[openrouter_solution_output, openrouter_conversation_history] ) with gr.TabItem("Image Problem Solver (Together AI)"): with gr.Row(): with gr.Column(scale=1): together_api_key = gr.Textbox( label="Together AI API Key", placeholder="Enter your Together AI API key", type="password" ) together_problem_input = gr.Textbox( label="Problem Description/Instruction (Optional)", placeholder="Enter additional context for the image problem...", lines=3 ) together_image_input = gr.Image( label="Upload Math Problem Image", type="filepath" ) with gr.Row(): together_submit_btn = gr.Button("Solve Problem", variant="primary") together_clear_btn = gr.Button("Clear") with gr.Column(scale=2): together_solution_output = gr.Markdown(label="Solution") # Store conversation history (invisible to user) together_conversation_history = gr.State(value=None) # Button actions together_submit_btn.click( fn=generate_math_solution_together, inputs=[together_api_key, together_problem_input, together_image_input, together_conversation_history], outputs=[together_solution_output, together_conversation_history] ) together_clear_btn.click( fn=lambda: ("", None), inputs=[], outputs=[together_solution_output, together_conversation_history] ) # Footer gr.Markdown(""" --- ### About This application uses Microsoft's Phi-4-reasoning-plus model via OpenRouter for text-based problems and Llama-Vision-Free via Together AI for image-based problems. Your API keys are required but not stored permanently. """) return demo # Launch the app if __name__ == "__main__": demo = create_demo() demo.launch()