Spaces:
Sleeping
Sleeping
File size: 12,267 Bytes
56bc4cf 33a4549 48a2803 c319a1e 56bc4cf 31df7d3 c319a1e 56bc4cf 3b0bca5 56bc4cf 33a4549 56bc4cf 31df7d3 56bc4cf 31df7d3 56bc4cf 33a4549 56bc4cf 31df7d3 48a2803 56bc4cf 33a4549 48a2803 31df7d3 33a4549 31df7d3 33a4549 48a2803 33a4549 c319a1e 33a4549 c319a1e 48a2803 c319a1e 31df7d3 c319a1e 31df7d3 c319a1e 31df7d3 c319a1e 31df7d3 c319a1e 48a2803 33a4549 31df7d3 33a4549 c319a1e 33a4549 48a2803 33a4549 c319a1e 31df7d3 c319a1e 48a2803 31df7d3 48a2803 33a4549 48a2803 c319a1e 33a4549 31df7d3 33a4549 48a2803 33a4549 31df7d3 33a4549 c58a978 33a4549 c319a1e 48a2803 33a4549 1353a1f 33a4549 342fd5f 3b0bca5 342fd5f 3b0bca5 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f 3e4bf85 342fd5f be852d2 3b0bca5 be852d2 342fd5f 3b0bca5 342fd5f be852d2 3778f9f 56bc4cf 3b0bca5 3778f9f 3b0bca5 be852d2 3778f9f 7a4bde2 3b0bca5 be852d2 7a4bde2 be852d2 3b0bca5 be852d2 3b0bca5 be852d2 3b0bca5 be852d2 3b0bca5 be852d2 3b0bca5 be852d2 3b0bca5 be852d2 3e4bf85 3b0bca5 3778f9f 8e384aa be852d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
import os
import sys
import tempfile
import time
import itertools
import streamlit as st
import pandas as pd
import requests
import openai
from threading import Thread
# Add 'src' to Python path
sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
from main import run_pipeline
st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
st.title("π§ AI-Powered Investing News Analyzer")
# === API Key Input ===
st.subheader("π API Keys")
openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# === Topic Input ===
st.subheader("π Topics of Interest")
topics_data = []
with st.form("topics_form"):
topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
for i in range(topic_count):
col1, col2 = st.columns(2)
with col1:
topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
with col2:
days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
topics_data.append({"topic": topic, "timespan_days": days})
submitted = st.form_submit_button("Run Analysis")
# === Tabs Setup ===
tab_report, tab_articles, tab_insights = st.tabs(["π Report", "π Articles", "π Insights"])
if submitted:
if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
st.warning("Please fill in all fields.")
else:
# Reset old results
articles_df = pd.DataFrame()
insights_df = pd.DataFrame()
html_paths = []
os.environ["OPENAI_API_KEY"] = openai_api_key
os.environ["TAVILY_API_KEY"] = tavily_api_key
df = pd.DataFrame(topics_data)
with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
df.to_csv(tmp_csv.name, index=False)
csv_path = tmp_csv.name
spinner_box = st.empty()
log_box = st.empty()
logs = []
rotating = True
def log(msg):
logs.append(msg)
log_box.code("\n".join(logs))
# === Rotating UI Messages ===
def rotating_messages():
messages = itertools.cycle([
"π Searching financial news...",
"π§ Running AI analysis...",
"π Evaluating sentiment...",
"π Generating report...",
"πΉ Finalizing insights..."
])
while rotating:
spinner_box.markdown(f"β³ {next(messages)}")
time.sleep(1.5)
rotator_thread = Thread(target=rotating_messages)
rotator_thread.start()
try:
# Check API Keys
try:
client = openai.OpenAI(api_key=openai_api_key)
client.models.list()
log("β
OpenAI API key is valid.")
except Exception as e:
log(f"β OpenAI API Key Error: {e}")
rotating = False
rotator_thread.join()
st.stop()
try:
response = requests.post(
"https://api.tavily.com/search",
headers={"Authorization": f"Bearer {tavily_api_key}"},
json={"query": "test", "days": 1, "max_results": 1}
)
if response.status_code == 200:
log("β
Tavily API key is valid.")
else:
log(f"β Tavily Key Error: {response.status_code} {response.text}")
rotating = False
rotator_thread.join()
st.stop()
except Exception as e:
log(f"β Tavily API Key Error: {e}")
rotating = False
rotator_thread.join()
st.stop()
with st.spinner("β³ Running analysis..."):
html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
rotating = False
rotator_thread.join()
spinner_box.success("β
Analysis complete!")
# === Report Tab ===
with tab_report:
st.subheader("π Latest Report")
if html_paths:
latest_report = html_paths[-1]
with open(latest_report, 'r', encoding='utf-8') as f:
html_content = f.read()
# Download button for HTML report
st.download_button(
label="β¬οΈ Download Report (HTML)",
data=html_content,
file_name=os.path.basename(latest_report),
mime="text/html"
)
st.components.v1.html(html_content, height=600, scrolling=True)
else:
st.error("β No reports were generated.")
# === Articles Tab ===
with tab_articles:
st.subheader("π Articles Table")
if not articles_df.empty:
st.dataframe(
articles_df[["Title", "URL", "Priority", "Sentiment", "Confidence", "Signal", "Date"]],
use_container_width=True
)
st.download_button(
label="β¬οΈ Download Articles CSV",
data=articles_df.to_csv(index=False).encode("utf-8"),
file_name="articles.csv",
mime="text/csv"
)
else:
st.info("No articles available.")
# === Insights Tab ===
with tab_insights:
st.subheader("π Investment Insights")
if not insights_df.empty:
st.dataframe(insights_df, use_container_width=True)
st.download_button(
label="β¬οΈ Download Insights CSV",
data=insights_df.to_csv(index=False).encode("utf-8"),
file_name="insights.csv",
mime="text/csv"
)
else:
st.info("No insights available.")
except Exception as e:
rotating = False
rotator_thread.join()
spinner_box.error("β Failed.")
log_box.error(f"β Error: {e}")
# import os
# import sys
# import tempfile
# import time
# import streamlit as st
# import pandas as pd
# import requests
# import openai
# sys.path.append(os.path.join(os.path.dirname(__file__), 'src'))
# from main import run_pipeline
# st.set_page_config(page_title="π° AI News Analyzer", layout="wide")
# st.title("π§ AI-Powered Investing News Analyzer")
# # === API Key Input ===
# st.subheader("π API Keys")
# openai_api_key = st.text_input("OpenAI API Key", type="password").strip()
# tavily_api_key = st.text_input("Tavily API Key", type="password").strip()
# # === Topic Input ===
# st.subheader("π Topics of Interest")
# topics_data = []
# with st.form("topics_form"):
# topic_count = st.number_input("How many topics?", min_value=1, max_value=10, value=1, step=1)
# for i in range(topic_count):
# col1, col2 = st.columns(2)
# with col1:
# topic = st.text_input(f"Topic {i+1}", key=f"topic_{i}")
# with col2:
# days = st.number_input(f"Timespan (days)", min_value=1, max_value=30, value=7, key=f"days_{i}")
# topics_data.append({"topic": topic, "timespan_days": days})
# submitted = st.form_submit_button("Run Analysis")
# # === Tabs Setup ===
# tab_report, tab_articles, tab_insights, tab_debug = st.tabs(["π Report", "π Articles", "π Insights", "π Debug"])
# if submitted:
# if not openai_api_key or not tavily_api_key or not all([td['topic'] for td in topics_data]):
# st.warning("Please fill in all fields.")
# else:
# articles_df = pd.DataFrame()
# insights_df = pd.DataFrame()
# html_paths = []
# os.environ["OPENAI_API_KEY"] = openai_api_key
# os.environ["TAVILY_API_KEY"] = tavily_api_key
# df = pd.DataFrame(topics_data)
# with tempfile.NamedTemporaryFile(delete=False, suffix=".csv") as tmp_csv:
# df.to_csv(tmp_csv.name, index=False)
# csv_path = tmp_csv.name
# spinner_box = st.empty()
# log_box = st.empty()
# logs = []
# def log(msg):
# logs.append(msg)
# log_box.code("\n".join(logs))
# try:
# spinner_box.markdown("β³ Checking API keys...")
# # === Check OpenAI Key ===
# try:
# client = openai.OpenAI(api_key=openai_api_key)
# client.models.list()
# log("β
OpenAI API key is valid.")
# except Exception as e:
# log(f"β OpenAI API Key Error: {e}")
# st.stop()
# # === Check Tavily Key ===
# try:
# response = requests.post(
# "https://api.tavily.com/search",
# headers={"Authorization": f"Bearer {tavily_api_key}"},
# json={"query": "test", "days": 1, "max_results": 1}
# )
# if response.status_code == 200:
# log("β
Tavily API key is valid.")
# else:
# log(f"β Tavily Key Error: {response.status_code} {response.text}")
# st.stop()
# except Exception as e:
# log(f"β Tavily API Key Error: {e}")
# st.stop()
# spinner_box.markdown("β³ Running analysis pipeline...")
# html_paths, articles_df, insights_df = run_pipeline(csv_path, tavily_api_key, progress_callback=log)
# spinner_box.success("β
Analysis complete!")
# # === Report Tab ===
# with tab_report:
# if html_paths:
# for path in html_paths:
# with open(path, 'r', encoding='utf-8') as f:
# html_content = f.read()
# st.components.v1.html(html_content, height=600, scrolling=True)
# else:
# st.error("β No reports were generated.")
# # === Articles Tab ===
# with tab_articles:
# st.subheader("π Articles Table")
# if not articles_df.empty:
# st.dataframe(articles_df[["Title", "URL", "Summary", "Priority", "Sentiment", "Confidence", "Signal", "Date"]],
# use_container_width=True)
# st.download_button(
# label="β¬οΈ Download Articles CSV",
# data=articles_df.to_csv(index=False).encode("utf-8"),
# file_name="articles.csv",
# mime="text/csv"
# )
# else:
# st.info("No articles available.")
# # === Insights Tab ===
# with tab_insights:
# st.subheader("π Top Investment Insights")
# if not insights_df.empty:
# st.dataframe(insights_df, use_container_width=True)
# st.download_button(
# label="β¬οΈ Download Insights CSV",
# data=insights_df.to_csv(index=False).encode("utf-8"),
# file_name="insights.csv",
# mime="text/csv"
# )
# else:
# st.info("No insights available.")
# # === Debug Tab ===
# with tab_debug:
# st.subheader("π Debug Log")
# st.code("\n".join(logs) if logs else "No logs yet.")
# except Exception as e:
# spinner_box.error("β Failed.")
# log_box.error(f"β Error: {e}")
|