File size: 7,702 Bytes
9df4cc0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

import argparse
import re
import torch
import logging
# import transformers  # noqa: F401
from transformers import pipeline, set_seed
from transformers import AutoConfig, OPTForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer
from datasets import load_dataset
from sklearn.metrics import accuracy_score, f1_score, confusion_matrix
from torch.utils.data import DataLoader
import deepspeed
import os
import pandas as pd
import time


def parse_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--path",
                        type=str,
                        help="Directory containing trained actor model")
    parser.add_argument("--debug",
                        type=bool,
                        default=False,
                        help="whether debug mode is on")
    parser.add_argument("--local_rank",
                        type=int,
                        help="local rank")
    parser.add_argument(
        "--max_new_tokens",
        type=int,
        default=128,
        help="Maximum new tokens to generate per response",
    )
    args = parser.parse_args()
    return args


def get_generator(path, local_rank):
    
    if 'llama' in path:
        tokenizer = LlamaTokenizer.from_pretrained(path, fast_tokenizer=True)
        tokenizer.pad_token = tokenizer.eos_token
        model_config = AutoConfig.from_pretrained(path)
        model = LlamaForCausalLM.from_pretrained(path,
                                                 from_tf=bool(".ckpt" in path),
                                                 config=model_config, 
                                                #  device_map='auto'
                                                #  , load_in_8bit=True
                                                 )
        model.config.end_token_id = tokenizer.eos_token_id
        model.config.pad_token_id = model.config.eos_token_id
        model.resize_token_embeddings(len(tokenizer))
        model.eval()
        generator = pipeline("text-generation",
                            model=model,
                            tokenizer=tokenizer,
                            device=local_rank)
    else:
        tokenizer = AutoTokenizer.from_pretrained(path, fast_tokenizer=True)
        tokenizer.pad_token = tokenizer.eos_token
        model_config = AutoConfig.from_pretrained(path)
        model = OPTForCausalLM.from_pretrained(path,
                                           from_tf=bool(".ckpt" in path),
                                           config=model_config, 
                                        #    device_map='auto'
                                        #    , load_in_8bit=True
                                           )

        model.config.end_token_id = tokenizer.eos_token_id
        model.config.pad_token_id = model.config.eos_token_id
        model.resize_token_embeddings(len(tokenizer))
        model.eval()
        generator = pipeline("text-generation",
                            model=model,
                            tokenizer=tokenizer,
                            device=local_rank)
    return generator


def process_response(response):
    output = str(response[0]["generated_text"])
    output = output.split("Assistant:")[1].strip()
    # output = output.replace("<|endoftext|></s>", "")
    output = output.replace("<|endoftext|>", "")
    output = output.replace("</s>", "")

    return output


def main(args):
    world_size = int(os.getenv('WORLD_SIZE', '1'))
    # world_size = torch.distributed.get_world_size()
    # local_rank = int(os.getenv('LOCAL_RANK', args.local_rank))
    # args.local_rank=int(os.getenv("LOCAL_RANK", -1))
    # local_rank = args.local_rank
    generator = get_generator(args.path, args.local_rank)
    # generator.model = deepspeed.init_inference(generator.model,
    #                                       mp_size=world_size,
    #                                       dtype=torch.half,
    #                                       replace_with_kernel_inject=True)
    
    set_seed(42)

    # load huggingface finacial phrasebank dataset
    # https://huggingface.co/datasets/financial_phrasebank
    dataset_fpb = load_dataset("financial_phrasebank", "sentences_50agree")
    label_mapping_fpb = {"negative": 0, "neutral": 1, "positive": 2}
    text_inputs_fpb = dataset_fpb['train']['sentence']
    labels_fpb = dataset_fpb['train']['label']
    recons_fpb = {"name": "fpb", "sentence": text_inputs_fpb, "label": labels_fpb, "label_mapping": label_mapping_fpb}

    dataset_fiqa = load_dataset("pauri32/fiqa-2018")
    label_mapping_fiqa = {"negative": 2, "neutral": 1, "positive": 0}
    text_inputs_fiqa = dataset_fiqa['test']['sentence']
    labels_fiqa = dataset_fiqa['test']['label']
    recons_fiqa = {"name": "fiqa", "sentence": text_inputs_fiqa, "label": labels_fiqa, "label_mapping": label_mapping_fiqa}

    # dataset_fpb_num = pd.read_csv("data/FPB_filtered_number.csv")
    # label_mapping_fpb_num = {"negative": 0, "neutral": 1, "positive": 2}
    # text_inputs_fpb_num = dataset_fpb_num['sentence']
    # labels_fpb_num = dataset_fpb_num['sentiment'].apply(lambda x: label_mapping_fpb_num[x])
    # recons_fpb_num = {"name": "fpb_num", "sentence": text_inputs_fpb_num, "label": labels_fpb_num, "label_mapping": label_mapping_fpb_num}

    dataset_twitter = load_dataset("zeroshot/twitter-financial-news-sentiment")
    label_mapping_twitter = {"negative": 0, "neutral": 2, "positive": 1}
    text_inputs_twitter = dataset_twitter['validation']['text']
    labels_twitter = dataset_twitter['validation']['label']
    recons_twitter = {"name": "twitter", "sentence": text_inputs_twitter, "label": labels_twitter, "label_mapping": label_mapping_twitter}


    # dataset_list = [recons_fpb, recons_fiqa, recons_twitter]
    dataset_list = [recons_twitter]
    # dataset_list = [recons_fpb_num]

    for dataset in dataset_list:
        labels = []
        preds = []

        text_inputs = dataset['sentence']
        process_inputs = [f"Human: Determine the sentiment of the financial news as negative, neutral or positive: {text_inputs[i]} Assistant: " for i in range(len(text_inputs))]
        labels = dataset['label']
        label_mapping = dataset['label_mapping']

        if args.debug:
            process_inputs = process_inputs[:100]
            labels = labels[:100]

        # response = generator(process_inputs, max_new_tokens=args.max_new_tokens, do_sample=True)
        start = time.time()
        response = generator(process_inputs, max_new_tokens=args.max_new_tokens)
        end = time.time()
        # print(response)
        outputs = [process_response(response[i]) for i in range(len(response))]

        for i in range(len(outputs)):
            if "negative" in outputs[i]:
                preds.append(label_mapping["negative"])
            elif "neutral" in outputs[i]:
                preds.append(label_mapping["neutral"])
            elif "positive" in outputs[i]:
                preds.append(label_mapping["positive"])
            else:
                preds.append(label_mapping["neutral"])
        
        print(f"Dataset: {dataset['name']}")
        print(f"Process time: {end-start}")
        print(f"Accuracy: {accuracy_score(labels, preds)}")
        print(f"F1: {f1_score(labels, preds, average='macro')}")
        print(f"Confusion Matrix: {confusion_matrix(labels, preds)}")


if __name__ == "__main__":
    # Silence warnings about `max_new_tokens` and `max_length` being set
    logging.getLogger("transformers").setLevel(logging.ERROR)

    args = parse_args()
    print(args)
    main(args)