File size: 11,779 Bytes
9df4cc0
3e4bf85
3778f9f
33a4549
9df4cc0
 
33a4549
9df4cc0
a9b1809
9df4cc0
 
 
 
 
 
33a4549
3778f9f
7cb8f2e
be852d2
7cb8f2e
 
be852d2
7cb8f2e
be852d2
7cb8f2e
be852d2
 
33a4549
48a2803
 
 
 
 
 
 
 
 
 
7cb8f2e
be852d2
 
33a4549
0858d17
3778f9f
be852d2
33a4549
 
c319a1e
 
ff72975
 
 
 
 
 
 
 
1353a1f
 
 
 
 
 
 
33a4549
7cb8f2e
 
33a4549
 
 
7cb8f2e
be852d2
 
 
 
33a4549
0858d17
 
 
c58a978
215f78a
 
0858d17
7cb8f2e
 
c58a978
be852d2
 
33a4549
 
be852d2
 
7cb8f2e
be852d2
7cb8f2e
c58a978
 
 
0858d17
 
 
1353a1f
33a4549
0858d17
c58a978
0858d17
c58a978
33a4549
 
7cb8f2e
 
48a2803
 
7cb8f2e
 
 
48a2803
7cb8f2e
 
 
33a4549
0858d17
33a4549
7cb8f2e
0858d17
 
be852d2
 
0858d17
be852d2
0858d17
be852d2
c58a978
be852d2
c58a978
be852d2
 
 
 
c58a978
 
 
be852d2
 
c58a978
7cb8f2e
 
33a4549
 
4b24cc9
 
 
 
 
 
 
 
 
 
0858d17
33a4549
0858d17
 
 
 
 
33a4549
 
0858d17
 
9df4cc0
be852d2
 
9df4cc0
 
 
 
be852d2
9df4cc0
3778f9f
9df4cc0
 
 
 
 
 
3e4bf85
 
c58a978
 
 
 
 
 
 
 
 
 
 
 
3778f9f
9df4cc0
be852d2
c58a978
3e4bf85
c58a978
9df4cc0
 
3778f9f
c58a978
 
 
 
 
 
 
 
 
 
9df4cc0
 
3778f9f
c58a978
9df4cc0
 
be852d2
c58a978
 
 
 
 
be852d2
c58a978
 
 
 
 
be852d2
c58a978
 
 
 
 
be852d2
 
c58a978
 
 
 
 
be852d2
c58a978
be852d2
 
c58a978
 
 
 
 
 
9df4cc0
c58a978
 
 
9df4cc0
c58a978
 
 
 
 
9df4cc0
c58a978
3e4bf85
c58a978
 
 
 
be852d2
c58a978
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9df4cc0
c58a978
3778f9f
9df4cc0
c58a978
9df4cc0
c58a978
 
 
 
 
9df4cc0
be852d2
c58a978
 
3e4bf85
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
import os
import pandas as pd
from datetime import datetime
from dotenv import load_dotenv
from md_html import convert_single_md_to_html as convert_md_to_html
from news_analysis import fetch_deep_news, generate_value_investor_report
from fin_interpreter import analyze_article

BASE_DIR = os.path.dirname(os.path.dirname(__file__))
DATA_DIR = os.path.join(BASE_DIR, "data")
HTML_DIR = os.path.join(BASE_DIR, "html")

os.makedirs(DATA_DIR, exist_ok=True)
os.makedirs(HTML_DIR, exist_ok=True)

load_dotenv()

# === Priority Logic ===
def derive_priority(sentiment, confidence):
    sentiment = sentiment.lower()
    if sentiment == "positive" and confidence > 0.7:
        return "High"
    if sentiment == "negative" and confidence > 0.6:
        return "High"
    if confidence > 0.5:
        return "Medium"
    return "Low"

# === Metrics Box ===
def build_metrics_box(topic, num_articles):
    now = datetime.now().strftime("%Y-%m-%d %H:%M")
    return f"""
> **Topic:** `{topic}`
> **Articles Collected:** `{num_articles}`
> **Generated:** `{now}`
---
"""

# === Main Analysis ===
def run_value_investing_analysis(csv_path, progress_callback=None):
    current_df = pd.read_csv(csv_path)
    all_articles = []
    company_data = []

    for _, row in current_df.iterrows():
        topic = row.get("topic")
        timespan = row.get("timespan_days", 7)
        # if progress_callback:
        #     progress_callback(f"πŸ” Processing topic: {topic} ({timespan} days)")
        # try:
        #     news = fetch_deep_news(topic, timespan)
        #     if progress_callback:
        #         progress_callback(f"[DEBUG] fetch_deep_news returned {len(news) if news else 0} articles.")
        # except Exception as e:
        #     if progress_callback:
        #         progress_callback(f"[ERROR] fetch_deep_news failed: {e}")
        #     continue
        try:
            news = fetch_deep_news(topic, timespan)
        except Exception as e:
            if progress_callback:
                progress_callback(f"[ERROR] fetch_deep_news failed: {e}")
            continue

        if not news:
            if progress_callback:
                progress_callback(f"⚠️ No news found for topic: {topic}")
            continue

        for article in news:
            summary = article.get("summary", "") or article.get("content", "")
            title = article.get("title", "Untitled")
            url = article.get("url", "")
            date = article.get("date", datetime.now().strftime("%Y-%m-%d"))

            try:
                result = analyze_article(summary)
                sentiment = result.get("sentiment", "Neutral")
                confidence = float(result.get("confidence", 0.0))
                signal = result.get("investment_decision", "Watch")
                #if progress_callback:
                    #progress_callback(f"πŸ“° [{title[:50]}...] β†’ Sentiment: {sentiment}, Confidence: {confidence}, Signal: {signal}")
            except Exception as e:
                if progress_callback:
                    progress_callback(f"[FinBERT ERROR] {e}")
                sentiment, confidence, signal = "Neutral", 0.0, "Watch"

            priority = derive_priority(sentiment, confidence)

            all_articles.append({
                "Title": title,
                "URL": url,
                "Summary": summary[:300] + "..." if summary else "",
                "Priority": priority,
                "Sentiment": sentiment,
                "Confidence": confidence,
                "Signal": signal,
                "Date": date
            })

            company_data.append({
                "Company": topic,
                "Sentiment": sentiment,
                "Confidence": confidence,
                "Signal": signal,
                "Summary": summary,
                "Priority": priority
            })

        try:
            report_body = generate_value_investor_report(topic, news)
            metrics_md = build_metrics_box(topic, len(news))
            full_md = metrics_md + report_body
            filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}.md"
            filepath = os.path.join(DATA_DIR, filename)
            with open(filepath, "w", encoding="utf-8") as f:
                f.write(full_md)
        except Exception as e:
            if progress_callback:
                progress_callback(f"[REPORT ERROR] {e}")

    return all_articles, company_data

# === Insights Tab Data ===
def build_company_insights(company_data):
    if not company_data:
        return pd.DataFrame()

    df = pd.DataFrame(company_data)
    insights = []
    for company, group in df.groupby("Company"):
        mentions = len(group)
        dominant_signal = group["Signal"].mode()[0] if not group["Signal"].mode().empty else "Watch"
        avg_confidence = round(group["Confidence"].mean(), 2)
        high_priority_ratio = round((group['Priority'] == 'High').sum() / len(group) * 100, 1)
        highlights = " | ".join(group["Summary"].head(2).tolist())
        insights.append({
            "Company": company,
            "Mentions": mentions,
            "Dominant Signal": dominant_signal,
            "Avg Confidence": avg_confidence,
            "Interest % (High Priority)": f"{high_priority_ratio}%",
            "Highlights": highlights
        })
    return pd.DataFrame(insights).sort_values(by="Avg Confidence", ascending=False).head(5)

# === Pipeline ===
def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
    os.environ["TAVILY_API_KEY"] = tavily_api_key

    # === Clean old reports (MD and HTML) ===
    for file in os.listdir(DATA_DIR):
        if file.endswith(".md"):
            os.remove(os.path.join(DATA_DIR, file))
    for file in os.listdir(HTML_DIR):
        if file.endswith(".html"):
            os.remove(os.path.join(HTML_DIR, file))

    # === Run the new analysis ===
    all_articles, company_data = run_value_investing_analysis(csv_path, progress_callback)

    html_paths = []
    for md_file in os.listdir(DATA_DIR):
        if md_file.endswith(".md"):
            convert_md_to_html(os.path.join(DATA_DIR, md_file), HTML_DIR)
            html_paths.append(os.path.join(HTML_DIR, md_file.replace(".md", ".html")))

    articles_df = pd.DataFrame(all_articles)
    insights_df = build_company_insights(company_data)
    return html_paths, articles_df, insights_df

# import os
# import pandas as pd
# from datetime import datetime
# from dotenv import load_dotenv
# from md_html import convert_single_md_to_html as convert_md_to_html
# from news_analysis import fetch_deep_news, generate_value_investor_report
# from fin_interpreter import analyze_article

# BASE_DIR = os.path.dirname(os.path.dirname(__file__))
# DATA_DIR = os.path.join(BASE_DIR, "data")
# HTML_DIR = os.path.join(BASE_DIR, "html")

# os.makedirs(DATA_DIR, exist_ok=True)
# os.makedirs(HTML_DIR, exist_ok=True)

# load_dotenv()

# # === Priority Logic ===
# def derive_priority(sentiment, confidence):
#     sentiment = sentiment.lower()
#     if sentiment == "positive" and confidence > 0.7:
#         return "High"
#     if sentiment == "negative" and confidence > 0.6:
#         return "High"
#     if confidence > 0.5:
#         return "Medium"
#     return "Low"

# # === Main Analysis ===
# def run_value_investing_analysis(csv_path, progress_callback=None):
#     current_df = pd.read_csv(csv_path)
#     all_articles = []
#     company_data = []

#     for _, row in current_df.iterrows():
#         topic = row.get("topic")
#         timespan = row.get("timespan_days", 7)
#         if progress_callback:
#             progress_callback(f"πŸ” Processing topic: {topic} ({timespan} days)")

#         try:
#             news = fetch_deep_news(topic, timespan)
#             if progress_callback:
#                 progress_callback(f"[DEBUG] fetch_deep_news returned {len(news) if news else 0} articles.")
#         except Exception as e:
#             if progress_callback:
#                 progress_callback(f"[ERROR] fetch_deep_news failed: {e}")
#             continue

#         if not news:
#             if progress_callback:
#                 progress_callback(f"⚠️ No news found for topic: {topic}")
#             continue

#         for article in news:
#             summary = article.get("summary", "") or article.get("content", "")
#             title = article.get("title", "Untitled")
#             url = article.get("url", "")
#             date = article.get("date", datetime.now().strftime("%Y-%m-%d"))

#             try:
#                 result = analyze_article(summary)
#                 sentiment = result.get("sentiment", "Neutral")
#                 confidence = float(result.get("confidence", 0.0))
#                 if progress_callback:
#                     progress_callback(f"πŸ“° [{title[:50]}...] β†’ Sentiment: {sentiment}, Confidence: {confidence}")
#             except Exception as e:
#                 if progress_callback:
#                     progress_callback(f"[FinBERT ERROR] {e}")
#                 sentiment, confidence = "Neutral", 0.0

#             priority = derive_priority(sentiment, confidence)

#             all_articles.append({
#                 "Title": title,
#                 "URL": url,
#                 "Summary": summary[:300] + "..." if summary else "",
#                 "Priority": priority,
#                 "Date": date,
#                 "Sentiment": sentiment,
#                 "Confidence": confidence
#             })

#             company_data.append({
#                 "Company": topic,
#                 "Sentiment": sentiment,
#                 "Confidence": confidence,
#                 "Summary": summary,
#             })

#         try:
#             report_body = generate_value_investor_report(topic, news)
#             filename = f"{topic.replace(' ', '_').lower()}_{datetime.now().strftime('%Y-%m-%d')}.md"
#             filepath = os.path.join(DATA_DIR, filename)
#             with open(filepath, "w", encoding="utf-8") as f:
#                 f.write(report_body)
#         except Exception as e:
#             if progress_callback:
#                 progress_callback(f"[REPORT ERROR] {e}")

#     return all_articles, company_data

# # === Insights Tab Data ===
# def build_company_insights(company_data):
#     if not company_data:
#         return pd.DataFrame()

#     df = pd.DataFrame(company_data)
#     insights = []
#     for company, group in df.groupby("Company"):
#         mentions = len(group)
#         dominant_sentiment = group["Sentiment"].mode()[0] if not group["Sentiment"].mode().empty else "Neutral"
#         avg_confidence = round(group["Confidence"].mean(), 2)
#         highlights = " | ".join(group["Summary"].head(2).tolist())
#         insights.append({
#             "Company": company,
#             "Mentions": mentions,
#             "Sentiment": dominant_sentiment,
#             "Confidence": avg_confidence,
#             "Highlights": highlights
#         })
#     return pd.DataFrame(insights).sort_values(by="Confidence", ascending=False).head(5)

# # === Pipeline ===
# def run_pipeline(csv_path, tavily_api_key, progress_callback=None):
#     os.environ["TAVILY_API_KEY"] = tavily_api_key
#     all_articles, company_data = run_value_investing_analysis(csv_path, progress_callback)

#     html_paths = []
#     for md_file in os.listdir(DATA_DIR):
#         if md_file.endswith(".md"):
#             convert_md_to_html(os.path.join(DATA_DIR, md_file), HTML_DIR)
#             html_paths.append(os.path.join(HTML_DIR, md_file.replace(".md", ".html")))

#     articles_df = pd.DataFrame(all_articles)
#     insights_df = build_company_insights(company_data)
#     return html_paths, articles_df, insights_df