import openai import time import json import argparse import csv # START: COPIED FROM = 10000: break r = eval(r['Messages']) dialog = "" knowledge = "" response = "" k = 0 d = 0 for message in r: if "message" in message: if k > 1 and message['sender'] == "assistant": response = message['message'] break if d > 3 and message['sender'] == "assistant": response = message['message'] break else: dialog = dialog + (SENDER[message['sender']] + ": " + message['message']) + " " d = d + 1 if "metadata" in message: if "path" in message['metadata']: knowledge = knowledge + message['metadata']['path'][2] k = k + 1 if knowledge == "" or dialog == "" or response == "": continue res = get_dialogue_res(knowledge, dialog, response, instruction) data = {"knowledge": knowledge, "dialogue_history": dialog, "right_response": response, "hallucinated_response": res} dump_jsonl(data, output_path, append=True) i = i + 1 print("sample {} completed!".format(i)) def generate_summarization_dataset(seed_data, instruction, output_path): with open(seed_data, 'r', encoding="utf-8") as f: data = f.readlines() text = [json.loads(d) for d in data] for i in range(10000): document = text[i]["document"] summary = text[i]["summary"] sum = get_summarization_res(document, summary, instruction) data = {"document": document, "right_summary": summary, "hallucinated_summary": sum} dump_jsonl(data, output_path, append=True) print("sample {} completed!".format(i)) def dump_jsonl(data, output_path, append=False): """ Write list of objects to a JSON lines file. """ mode = 'a+' if append else 'w' with open(output_path, mode, encoding='utf-8') as f: json_record = json.dumps(data, ensure_ascii=False) f.write(json_record + '\n') # END: COPIED FROM < https://github.com/RUCAIBox/HaluEval.git > if __name__ == '__main__': parser = argparse.ArgumentParser(description="Hallucination Generation") parser.add_argument("--seed_data", default="hotpot_train_v1.1.json", help="the original dataset file") parser.add_argument("--task", default="qa", help="qa, dialogue, or summarization") parser.add_argument("--strategy",default="one-turn", help="one-turn or multi-turn") args = parser.parse_args() seed_data = args.seed_data if args.strategy == "one-turn": instruction_file = "{}/{}_{}_instruction.txt".format(args.task, args.task, args.strategy) f = open(instruction_file, 'r', encoding="utf-8") instruction = f.read() elif args.strategy == "multi-turn": instruction_file = "{}/{}_{}_instruction.json".format(args.task, args.task, args.strategy) with open(instruction_file, 'r', encoding="utf-8") as f: lines = f.readlines() instruction = [json.loads(line) for line in lines] else: raise ValueError("The strategy must be one-turn or multi-turn!") output_path = "{}/{}_{}_data.json".format(args.task, args.task, args.strategy) if args.task == "qa": generate_qa_dataset(seed_data, instruction, output_path) elif args.task == "dialogue": generate_dialogue_dataset(seed_data, instruction, output_path) elif args.task == "summarization": generate_summarization_dataset(seed_data, instruction, output_path) else: raise ValueError("The task must be qa, dialogue, or summarization!")