# Copyright (c) Microsoft Corporation. # SPDX-License-Identifier: Apache-2.0 # DeepSpeed Team import argparse import re import logging import transformers # noqa: F401 from transformers import pipeline, set_seed from transformers import AutoConfig, OPTForCausalLM, AutoTokenizer, LlamaForCausalLM, LlamaTokenizer def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("--path", type=str, help="Directory containing trained actor model") parser.add_argument( "--max_new_tokens", type=int, default=128, help="Maximum new tokens to generate per response", ) args = parser.parse_args() return args def get_generator(path): if 'llama' in path: tokenizer = LlamaTokenizer.from_pretrained(path, fast_tokenizer=True) tokenizer.pad_token = tokenizer.eos_token model_config = AutoConfig.from_pretrained(path) model = LlamaForCausalLM.from_pretrained(path, from_tf=bool(".ckpt" in path), config=model_config, device_map='auto', load_in_8bit=True) model.config.end_token_id = tokenizer.eos_token_id model.config.pad_token_id = model.config.eos_token_id model.resize_token_embeddings(len(tokenizer)) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) else: tokenizer = AutoTokenizer.from_pretrained(path, fast_tokenizer=True) tokenizer.pad_token = tokenizer.eos_token model_config = AutoConfig.from_pretrained(path) model = OPTForCausalLM.from_pretrained(path, from_tf=bool(".ckpt" in path), config=model_config, device_map='auto', load_in_8bit=True) model.config.end_token_id = tokenizer.eos_token_id model.config.pad_token_id = model.config.eos_token_id model.resize_token_embeddings(len(tokenizer)) generator = pipeline("text-generation", model=model, tokenizer=tokenizer) return generator def get_user_input(user_input): tmp = input("Enter input (type 'quit' to exit, 'clear' to clean memory): ") new_inputs = f"Human: {tmp}\n Assistant: " user_input += f" {new_inputs}" return user_input, tmp == "quit", tmp == "clear" def get_model_response(generator, user_input, max_new_tokens): response = generator(user_input, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.7) return response def process_response(response, num_rounds): output = str(response[0]["generated_text"]) # output = output.replace("<|endoftext|>", "") output = output.replace("<|endoftext|>", "") output = output.replace("", "") all_positions = [m.start() for m in re.finditer("Human: ", output)] place_of_second_q = -1 if len(all_positions) > num_rounds: place_of_second_q = all_positions[num_rounds] if place_of_second_q != -1: output = output[0:place_of_second_q] return output def main(args): generator = get_generator(args.path) set_seed(42) user_input = "" num_rounds = 0 while True: num_rounds += 1 user_input, quit, clear = get_user_input(user_input) if quit: break if clear: user_input, num_rounds = "", 0 continue response = get_model_response(generator, user_input, args.max_new_tokens) output = process_response(response, num_rounds) print("-" * 30 + f" Round {num_rounds} " + "-" * 30) print(f"{output}") user_input = f"{output}\n\n" if __name__ == "__main__": # Silence warnings about `max_new_tokens` and `max_length` being set logging.getLogger("transformers").setLevel(logging.ERROR) args = parse_args() main(args) # Example: """ Human: what is internet explorer? Assistant: Internet Explorer is an internet browser developed by Microsoft. It is primarily used for browsing the web, but can also be used to run some applications. Internet Explorer is often considered the best and most popular internet browser currently available, though there are many other options available. Human: what is edge? Assistant: Edge is a newer version of the Microsoft internet browser, developed by Microsoft. It is focused on improving performance and security, and offers a more modern user interface. Edge is currently the most popular internet browser on the market, and is also used heavily by Microsoft employees. """