Spaces:
Runtime error
Runtime error
File size: 23,340 Bytes
f94dafd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 |
from datetime import time
import os
from flask import Flask, render_template, request
import pandas as pd
import plotly.express as px
import io
import base64
import google.generativeai as genai
from collections import defaultdict
import numpy as np
import google.generativeai as genai
app = Flask(__name__)
# Configure Gemini API
genai.configure(api_key=os.getenv('GEMINI_API_KEY'))
model = genai.GenerativeModel("gemini-1.5-flash")
WEIGHTS = {
'experience': 20,
'degree': 20,
'research': 20,
'publication': 20,
'skills': 20
}
# Ideal student-to-faculty ratio
IDEAL_RATIO = 20
def calculate_grades(row, weights):
"""Function to calculate grades."""
experience_grade = normalize(row['Years_of_Experience'], 0, 35) * weights['experience']
degree_grade = (1 if row['Degree_Held'] in ['PhD', 'MPhil'] else 0.75) * weights['degree']
research_grade = normalize(row['Research_Count'], 0, 20) * weights['research']
publication_grade = normalize(row['Publications_Count'], 0, 50) * weights['publication']
skills_grade = normalize(len(str(row['Skills']).split(',')), 0, 10) * weights['skills']
total_grade = (experience_grade + degree_grade + research_grade + publication_grade + skills_grade) / sum(weights.values())
if row['Publications_Count'] > 30:
total_grade += 0.05
if row['Years_of_Experience'] < 2:
total_grade -= 0.05
return min(1.0, max(0.0, total_grade))
def normalize(value, min_value, max_value):
"""Function to normalize values."""
return (value - min_value) / (max_value - min_value) if max_value - min_value != 0 else 0
def generate_with_retry(query, retries=3, delay=2):
for attempt in range(retries):
try:
gemini_response = model.generate_content(query)
return gemini_response.text
except Exception as e:
if "429" in str(e) and attempt < retries - 1:
time.sleep(delay * (2 ** attempt)) # Correctly use time.sleep
else:
raise e
def perform_swot_analysis(faculty_df, teaching_responses):
"""Enhanced SWOT analysis based on faculty data and teaching responses."""
strengths = []
weaknesses = []
opportunities = []
threats = []
# Analyze faculty data
avg_experience = faculty_df['Years_of_Experience'].mean()
avg_publications = faculty_df['Publications_Count'].mean()
avg_research = faculty_df['Research_Count'].mean()
phd_count = len(faculty_df[faculty_df['Degree_Held'] == 'PhD'])
phd_percentage = (phd_count / len(faculty_df)) * 100
# Faculty Qualifications Analysis
if phd_percentage > 60:
strengths.append("High percentage of PhD holders ({}%)".format(round(phd_percentage)))
elif phd_percentage < 30:
weaknesses.append("Low percentage of PhD holders ({}%)".format(round(phd_percentage)))
opportunities.append("Encourage faculty to pursue higher education")
if avg_experience > 10:
strengths.append("Strong experienced faculty base (avg. {} years)".format(round(avg_experience)))
elif avg_experience < 5:
weaknesses.append("Relatively inexperienced faculty (avg. {} years)".format(round(avg_experience)))
opportunities.append("Implement mentorship programs")
# Research Output Analysis
if avg_publications > 20:
strengths.append("High research output through publications")
elif avg_publications < 10:
weaknesses.append("Low publication count")
opportunities.append("Create research incentives")
# Teaching Methodology Analysis
if teaching_responses:
# Course Design Analysis
course_revision = teaching_responses.get('course_revision', '')
if course_revision == 'Annually':
strengths.append("Regular curriculum updates")
elif course_revision == 'Rarely':
weaknesses.append("Infrequent curriculum revision")
threats.append("Risk of outdated curriculum")
# Technology Integration
tech_usage = teaching_responses.get('tech_usage', '')
if tech_usage == 'Yes':
strengths.append("Strong technology integration in teaching")
else:
weaknesses.append("Limited use of technology in teaching")
opportunities.append("Implement modern teaching technologies")
# Assessment Methods
assessment_methods = teaching_responses.get('assessment_methods', [])
if len(assessment_methods) >= 3:
strengths.append("Diverse assessment methods")
elif len(assessment_methods) < 2:
weaknesses.append("Limited assessment variety")
opportunities.append("Diversify assessment methods")
# Practical Learning
practical_percentage = int(teaching_responses.get('practical_percentage', 0))
if practical_percentage > 50:
strengths.append("Strong practical learning focus")
elif practical_percentage < 30:
weaknesses.append("Limited practical exposure")
opportunities.append("Increase hands-on learning activities")
# Student Engagement
student_participation = int(teaching_responses.get('student_participation', 0))
if student_participation > 75:
strengths.append("High student engagement")
elif student_participation < 50:
weaknesses.append("Low student participation")
opportunities.append("Implement engagement strategies")
# Teaching Methods
teaching_methods = teaching_responses.get('teaching_methods', [])
if len(teaching_methods) >= 3:
strengths.append("Diverse teaching methodologies")
elif len(teaching_methods) < 2:
weaknesses.append("Limited teaching methods")
opportunities.append("Expand teaching methodology")
# Professional Development
prof_dev = int(teaching_responses.get('professional_development', 0))
if prof_dev > 3:
strengths.append("Strong commitment to professional development")
elif prof_dev < 2:
weaknesses.append("Limited professional development")
opportunities.append("Increase faculty development programs")
# Industry Relevance
curriculum_relevance = int(teaching_responses.get('curriculum_relevance', 0))
if curriculum_relevance >= 8:
strengths.append("High industry relevance")
elif curriculum_relevance <= 5:
weaknesses.append("Low industry alignment")
threats.append("Risk of skill-industry mismatch")
# Add general threats
threats.extend([
"Rapid technological changes in education",
"Increasing competition from online education",
"Changing student learning preferences"
])
# Add general opportunities
opportunities.extend([
"Integration of emerging technologies",
"Industry collaboration potential",
"International academic partnerships"
])
return {
'strengths': strengths,
'weaknesses': weaknesses,
'opportunities': opportunities,
'threats': threats
}
@app.route('/', methods=['GET', 'POST'])
def index():
plots = {}
graded_csv = None
department_tables = {}
deficiency_table = None
departments = []
swot_results=None
teaching_responses=None
gemini_insights = {}
if request.method == 'POST':
if 'faculty_file' not in request.files:
return render_template('index.html', error="Error: Faculty file must be uploaded.")
faculty_file = request.files['faculty_file']
if faculty_file.filename == '':
return render_template('index.html', error="Error: Faculty file must be selected for upload.")
try:
# Load faculty data
faculty_df = pd.read_csv(faculty_file)
# Validate columns in faculty data
required_faculty_columns = {'Name', 'Department', 'Post', 'Years_of_Experience', 'Degree_Held',
'Research_Count', 'Publications_Count', 'Skills'}
missing_faculty_columns = required_faculty_columns - set(faculty_df.columns)
if missing_faculty_columns:
return render_template('index.html',
error=f"Error: The faculty CSV is missing the following columns: {', '.join(missing_faculty_columns)}")
# Calculate grades
faculty_df['Grade'] = faculty_df.apply(lambda row: calculate_grades(row, WEIGHTS), axis=1)
# Get student counts from the form
student_counts = {department: int(request.form.get(f'students_{department}', 0) or 0) for department in faculty_df['Department'].unique()}
# Separate tables for each department
for department in faculty_df['Department'].unique():
department_data = faculty_df[faculty_df['Department'] == department]
department_tables[department] = {
'columns': department_data.columns.tolist(),
'rows': department_data.values.tolist()
}
departments.append(department)
graph_data = [
{
"title": "Count of Faculty by Department",
"data": faculty_df['Department'].value_counts().reset_index(name='count'),
"graph": lambda df: px.bar(df, x='Department', y='count', title="Count of Faculty by Department",
labels={'Department': 'Department', 'count': 'Count'}),
"query": "Provide insights into the distribution of faculty across departments based on this data."
},
{
"title": "Students vs Faculty by Department",
"data": pd.DataFrame({
"Department": faculty_df['Department'].unique(),
"Number_of_Students": [int(request.form.get(f'students_{dep}', 0)) for dep in
faculty_df['Department'].unique()],
"Number_of_Faculty": faculty_df['Department'].value_counts().values
}),
"graph": lambda df: px.bar(df, x='Department', y=['Number_of_Students', 'Number_of_Faculty'],
barmode='group',
title="Students vs Faculty by Department"),
"query": "Analyze the relationship between the number of students and faculty by department based on this data."
},
{
"title": "Post vs Skills",
"data": faculty_df[['Post', 'Skills']].assign(
Skills_Count=lambda x: x['Skills'].apply(lambda y: len(str(y).split(',')))),
"graph": lambda df: px.scatter(df, x='Post', y='Skills_Count', title="Post vs Skills"),
"query": "Explain the relationship between Post and Skills based on this data."
},
{
"title": "Degree vs Publications",
"data": faculty_df[['Degree_Held', 'Publications_Count']],
"graph": lambda df: px.box(df, x='Degree_Held', y='Publications_Count',
title="Degree vs Publications", color='Degree_Held'),
"query": "Describe the distribution of publications by degree based on this data."
},
{
"title": "Department-wise Faculty Count by Degree",
"data": faculty_df.groupby(['Department', 'Degree_Held']).size().reset_index(name='Count'),
"graph": lambda df: px.bar(df, x='Department', y='Count', color='Degree_Held', barmode='group',
title="Department-wise Faculty Count by Degree"),
"query": "What can we infer about the qualifications of faculty across departments from this data?"
},
{
"title": "Experience Distribution by Degree",
"data": faculty_df[['Degree_Held', 'Years_of_Experience']],
"graph": lambda df: px.violin(df, x='Degree_Held', y='Years_of_Experience',
title="Experience Distribution by Degree",
color='Degree_Held'),
"query": "Analyze the distribution of experience across different degree levels using this data."
},
{
"title": "Research Count by Department",
"data": faculty_df.groupby('Department')['Research_Count'].sum().reset_index(),
"graph": lambda df: px.bar(df, x='Department', y='Research_Count',
title="Research Count by Department"),
"query": "What insights can be drawn about the research output of each department based on this data?"
},
{
"title": "Publications Count by Department",
"data": faculty_df.groupby('Department')['Publications_Count'].sum().reset_index(),
"graph": lambda df: px.bar(df, x='Department', y='Publications_Count',
title="Publications Count by Department"),
"query": "Describe the publication trends across departments using this data."
},
{
"title": "Skills Count by Department",
"data": faculty_df.groupby('Department').apply(
lambda x: x['Skills'].apply(lambda y: len(str(y).split(','))).sum()
).reset_index(name='Skills_Count'),
"graph": lambda df: px.bar(df, x='Department', y='Skills_Count',
title="Skills Count by Department"),
"query": "Explain the distribution of skills among faculty across different departments based on this data."
},
{
"title": "Grades Distribution",
"data": faculty_df[['Department', 'Grade']],
"graph": lambda df: px.box(df, x='Department', y='Grade', title="Grades Distribution by Department",
color='Department'),
"query": "What insights can we infer from the grades distribution of faculty across departments?"
},
{
"title": "Experience vs Publications",
"data": faculty_df[['Years_of_Experience', 'Publications_Count']],
"graph": lambda df: px.scatter(df, x='Years_of_Experience', y='Publications_Count',
title="Experience vs Publications",
labels={'Years_of_Experience': 'Years of Experience',
'Publications_Count': 'Publications Count'}),
"query": "Analyze the relationship between years of experience and the number of publications based on this data."
},
{
"title": "Top Departments by Research",
"data": faculty_df.groupby('Department')['Research_Count'].sum().reset_index().sort_values(
by='Research_Count', ascending=False).head(5),
"graph": lambda df: px.bar(df, x='Department', y='Research_Count',
title="Top 5 Departments by Research Output"),
"query": "Identify the top departments by research output and analyze their characteristics."
}
]
for graph in graph_data:
# Generate the graph
graph_df = graph["data"]
fig = graph["graph"](graph_df)
plot_html = fig.to_html(full_html=False)
plots[graph["title"]] = plot_html
# Prepare the query for Gemini
query = (
f"{graph['query']}\n\n"
"Data:\n"
f"{graph_df.to_csv(index=False)}\n\n"
"Provide a concise summary in 100 words, formatted without special characters like '*'. "
"Use proper sentences and highlight key points using **bold text**."
)
# Use retry logic for Gemini API
try:
gemini_response = generate_with_retry(query)
raw_text = gemini_response.replace('*', '').strip()
# Truncate if necessary
if len(raw_text) > 150:
raw_text = raw_text[:147].rsplit(' ', 1)[0] + "..."
gemini_insights[graph["title"]] = raw_text
except Exception as e:
gemini_insights[graph["title"]] = f"Error generating insight: {str(e)}"
# Move all faculty_counts calculations inside the try block
faculty_counts = faculty_df['Department'].value_counts().reset_index()
faculty_counts.columns = ['Department', 'Number_of_Faculty']
# Map number of students
faculty_counts['Number_of_Students'] = faculty_counts['Department'].map(student_counts)
# Calculate ideal numbers based on S (students), R=9 (1+2+6)
faculty_counts['Total_Ideal_Faculty'] = (faculty_counts['Number_of_Students'] / IDEAL_RATIO).apply(
lambda x: int(x) if x.is_integer() else int(x) + 1
)
# Role-specific ideal faculty counts
faculty_counts['Ideal_Principal'] = 1 # Always 1
faculty_counts['Ideal_Professor'] = (faculty_counts['Number_of_Students'] * 1 / (20 * 9)).apply(
lambda x: int(x) if x.is_integer() else int(x) + 1
)
faculty_counts['Ideal_Associate_Professor'] = (faculty_counts['Number_of_Students'] * 2 / (20 * 9)).apply(
lambda x: int(x) if x.is_integer() else int(x) + 1
)
faculty_counts['Ideal_Assistant_Professor'] = (faculty_counts['Number_of_Students'] * 6 / (20 * 9)).apply(
lambda x: int(x) if x.is_integer() else int(x) + 1
)
# Calculate deficiencies for each role
faculty_counts['Deficiency_Principal'] = faculty_counts['Ideal_Principal'] - faculty_df[
faculty_df['Post'] == 'Principal'].groupby('Department')['Post'].count().reindex(faculty_counts['Department']).fillna(0).astype(int)
faculty_counts['Deficiency_Professor'] = faculty_counts['Ideal_Professor'] - faculty_df[
faculty_df['Post'] == 'Professor'].groupby('Department')['Post'].count().reindex(faculty_counts['Department']).fillna(0).astype(int)
faculty_counts['Deficiency_Associate_Professor'] = faculty_counts['Ideal_Associate_Professor'] - faculty_df[
faculty_df['Post'] == 'Associate Professor'].groupby('Department')['Post'].count().reindex(faculty_counts['Department']).fillna(0).astype(int)
faculty_counts['Deficiency_Assistant_Professor'] = faculty_counts['Ideal_Assistant_Professor'] - faculty_df[
faculty_df['Post'] == 'Assistant Professor'].groupby('Department')['Post'].count().reindex(faculty_counts['Department']).fillna(0).astype(int)
# Overall deficiency
faculty_counts['Meets_Ratio'] = (faculty_counts['Deficiency_Principal'] <= 0) & \
(faculty_counts['Deficiency_Professor'] <= 0) & \
(faculty_counts['Deficiency_Associate_Professor'] <= 0) & \
(faculty_counts['Deficiency_Assistant_Professor'] <= 0)
faculty_counts['Meets_Ratio'] = faculty_counts['Meets_Ratio'].apply(lambda x: "✔️" if x else "❌")
# Prepare the final deficiency table
deficiency_table = faculty_counts[[
'Department', 'Number_of_Students', 'Number_of_Faculty',
'Ideal_Principal', 'Ideal_Professor', 'Ideal_Associate_Professor', 'Ideal_Assistant_Professor',
'Deficiency_Principal', 'Deficiency_Professor', 'Deficiency_Associate_Professor', 'Deficiency_Assistant_Professor',
'Meets_Ratio']].to_html(classes="table table-bordered table-hover", index=False, escape=False)
# Encode graded CSV
csv_output = io.BytesIO()
faculty_df.to_csv(csv_output, index=False)
csv_output.seek(0)
graded_csv = base64.b64encode(csv_output.getvalue()).decode()
# Collect teaching evaluation responses
teaching_responses = {
'course_revision': request.form.get('course_revision', ''),
'case_studies': request.form.get('case_studies', ''),
'assessment_methods': request.form.getlist('assessment_methods') or [],
'practical_percentage': int(request.form.get('practical_percentage', 0) or 0),
'curriculum_relevance': int(request.form.get('curriculum_relevance', 0) or 0),
'interactive_sessions': request.form.get('interactive_sessions', ''),
'student_participation': int(request.form.get('student_participation', 0) or 0),
'personalized_feedback': request.form.get('personalized_feedback', ''),
'student_interest': request.form.get('student_interest', ''),
'tech_usage': request.form.get('tech_usage', ''),
'teaching_methods': request.form.getlist('teaching_methods') or [],
'critical_thinking': request.form.get('critical_thinking', ''),
'student_feedback': request.form.get('student_feedback', ''),
'feedback_actions': request.form.get('feedback_actions', ''),
'professional_development': int(request.form.get('professional_development', 0) or 0)
}
# Perform SWOT analysis
swot_results = perform_swot_analysis(faculty_df, teaching_responses)
except Exception as e:
return render_template('index.html', error=f"An unexpected error occurred: {str(e)}")
return render_template('index.html',
plots=plots,
graded_csv=graded_csv,
department_tables=department_tables,
departments=departments,
deficiency_table=deficiency_table,
gemini_insights=gemini_insights,
swot_results=swot_results,
teaching_responses=teaching_responses)
if __name__ == '__main__':
app.run(debug=True, port=5632)
|