Spaces:
Sleeping
Sleeping
File size: 8,073 Bytes
164ae98 dc838cd cff4429 164ae98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import streamlit as st
import google.generativeai as genai
# from google import genai
from PIL import Image
import os
from typing import Tuple, Optional
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class MRIScanAnalyzer:
def __init__(self, api_key: str):
"""Initialize the MRI Scan Analyzer with API key and configuration."""
self.client = genai.Client(api_key=api_key)
self.setup_page_config()
self.apply_custom_styles()
@staticmethod
def setup_page_config() -> None:
"""Configure Streamlit page settings."""
st.set_page_config(
page_title="MRI Scan Analytics",
page_icon="π§ ",
layout="wide"
)
@staticmethod
def apply_custom_styles() -> None:
"""Apply custom CSS styles with improved dark theme."""
st.markdown("""
<style>
:root {
--background-color: #1a1a1a;
--secondary-bg: #2d2d2d;
--text-color: #e0e0e0;
--accent-color: #4CAF50;
--border-color: #404040;
--hover-color: #45a049;
}
.main { background-color: var(--background-color); }
.stApp { background-color: var(--background-color); }
.stButton>button {
width: 100%;
background-color: var(--accent-color);
color: white;
padding: 0.75rem;
border-radius: 6px;
border: none;
font-weight: 600;
transition: background-color 0.3s ease;
}
.stButton>button:hover {
background-color: var(--hover-color);
}
.report-container {
background-color: var(--secondary-bg);
padding: 2rem;
border-radius: 12px;
margin: 1rem 0;
border: 1px solid var(--border-color);
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
</style>
""", unsafe_allow_html=True)
def analyze_image(self, img: Image.Image) -> Tuple[Optional[str], Optional[str]]:
"""
Analyze MRI scan image using Gemini AI.
Returns a tuple of (doctor_analysis, patient_analysis).
"""
try:
prompts = {
"doctor": """
Provide a structured analysis of this MRI scan for medical professionals without including any introductory or acknowledgment phrases.
Follow the structure below:
1. Imaging Observations
- Describe key anatomical structures, signal intensities, and any contrast differences
2. Diagnostic Findings
- Identify abnormalities and potential areas of concern
3. Clinical Correlation
- Suggest possible differential diagnoses and recommendations for further evaluation
4. Technical Quality
- Comment on image quality, positioning, and any artifacts present
""",
"patient": """
Explain the findings of this MRI scan in clear, simple terms for a patient without including any introductory or acknowledgment phrases.
Follow the structure below:
1. What We See
- Describe the part of the body shown and any notable features in everyday language
2. What It Means
- Provide a simple explanation of the findings and their potential implications
3. Next Steps
- Outline any recommendations or follow-up actions in a patient-friendly manner
"""
}
responses = {}
for audience, prompt in prompts.items():
response = self.client.models.generate_content(
model="gemini-2.0-flash",
contents=[prompt, img]
)
responses[audience] = response.text if hasattr(response, 'text') else None
return responses["doctor"], responses["patient"]
except Exception as e:
logger.error(f"Analysis failed: {str(e)}")
return None, None
def run(self):
"""Run the Streamlit MRI scan analysis application."""
st.title("π§ MRI Scan Analytics")
st.markdown("""
Advanced MRI scan analysis powered by AI. Upload your scan for instant
insights tailored for both medical professionals and patients.
""")
col1, col2 = st.columns([1, 1.5])
with col1:
uploaded_file = self.handle_file_upload()
with col2:
if uploaded_file:
self.process_analysis(uploaded_file)
else:
self.show_instructions()
self.show_footer()
def handle_file_upload(self) -> Optional[object]:
"""Handle file upload and display image preview."""
uploaded_file = st.file_uploader(
"Upload MRI Scan Image",
type=["png", "jpg", "jpeg"],
help="Supported formats: PNG, JPG, JPEG"
)
if uploaded_file:
img = Image.open(uploaded_file)
st.image(img, caption="Uploaded MRI Scan", use_container_width =True)
with st.expander("Image Details"):
st.write(f"**Filename:** {uploaded_file.name}")
st.write(f"**Size:** {uploaded_file.size/1024:.2f} KB")
st.write(f"**Format:** {img.format}")
st.write(f"**Dimensions:** {img.size[0]}x{img.size[1]} pixels")
return uploaded_file
def process_analysis(self, uploaded_file: object) -> None:
"""Process the uploaded MRI image and display analysis."""
if st.button("π Analyze MRI Scan", key="analyze_button"):
with st.spinner("Analyzing MRI scan..."):
img = Image.open(uploaded_file)
doctor_analysis, patient_analysis = self.analyze_image(img)
if doctor_analysis and patient_analysis:
tab1, tab2 = st.tabs(["π Medical Report", "π₯ Patient Summary"])
with tab1:
st.markdown("### Medical Professional's Report")
st.markdown(f"<div class='report-container'>{doctor_analysis}</div>",
unsafe_allow_html=True)
with tab2:
st.markdown("### Patient-Friendly Explanation")
st.markdown(f"<div class='report-container'>{patient_analysis}</div>",
unsafe_allow_html=True)
else:
st.error("Analysis failed. Please try again.")
@staticmethod
def show_instructions() -> None:
"""Display instructions when no image is uploaded."""
st.info("π Upload an MRI scan image to begin analysis")
with st.expander("βΉοΈ How it works"):
st.markdown("""
1. **Upload** your MRI scan image
2. Click **Analyze**
3. Receive two detailed reports:
- Technical analysis for medical professionals
- Patient-friendly explanation
""")
@staticmethod
def show_footer() -> None:
"""Display the application footer."""
st.markdown("---")
st.markdown(
"""
<div style='text-align: center'>
<p style='color: #888888; font-size: 0.8em;'>
UNDER DEVELOPMENT
</p>
</div>
""",
unsafe_allow_html=True
)
if __name__ == "__main__":
# Get API key from environment variable or set directly here
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
st.error("Please set GEMINI_API_KEY environment variable")
else:
analyzer = MRIScanAnalyzer(api_key)
analyzer.run()
|