Spaces:
Runtime error
Runtime error
File size: 1,408 Bytes
834496f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import HfFolder
import os
from dotenv import load_dotenv
load_dotenv()
# Set token directly
api_key = os.getenv('HF_API_KEY')
model_name = "mistralai/Mixtral-8x7B-Instruct-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=True)
model = AutoModelForCausalLM.from_pretrained(model_name, use_auth_token=True)
# Define chatbot function
def chatbot(prompt):
system_prompt = (
"You are a helpful coding assistant. Answer questions with clear and concise explanations. "
"Provide examples using proper Markdown formatting for code blocks.\n\n"
"Question: {user_prompt}\n\nAnswer:"
)
final_prompt = system_prompt.format(user_prompt=prompt)
inputs = tokenizer(final_prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return f"**Here is the response:**\n\n{response.strip()}"
# Create Gradio interface
interface = gr.Interface(
fn=chatbot,
inputs="text",
outputs="text",
title="Coding Chatbot",
description="Ask coding questions and get AI-generated code!",
)
# Launch the app
if __name__ == "__main__":
interface.launch()
|