Spaces:
Sleeping
Sleeping
File size: 18,420 Bytes
2c2d1c2 3100614 2c2d1c2 3f35fb7 2c2d1c2 3f35fb7 9ff1e2e 3f35fb7 16e2729 9ff1e2e 3f35fb7 2c2d1c2 3100614 16e2729 3100614 2c2d1c2 3f35fb7 2c2d1c2 3100614 2c2d1c2 3f35fb7 2c2d1c2 3f35fb7 2c2d1c2 3f35fb7 3100614 2c2d1c2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 |
from flask import Flask, render_template, request, jsonify, send_file
import google.generativeai as genai
import base64
import logging
from weasyprint import HTML
import os
from datetime import datetime
import tempfile
from io import BytesIO
import jinja2
from dotenv import load_dotenv
from tenacity import retry, stop_after_attempt, wait_exponential
app = Flask(__name__)
# Load environment variables
load_dotenv()
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
# Configure Gemini API with error handling
api_key = os.getenv('GOOGLE_API_KEY')
if not api_key:
error_msg = ("No Google API key found. "
"For Hugging Face deployment, please add GOOGLE_API_KEY "
"in your Space's Settings -> Repository Secrets")
logger.error(error_msg)
raise ValueError(error_msg)
try:
genai.configure(api_key=api_key)
# Configure the model with safety settings
generation_config = {
"temperature": 0.9,
"top_p": 1,
"top_k": 1,
"max_output_tokens": 2048,
}
safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_MEDIUM_AND_ABOVE"
}
]
model = genai.GenerativeModel(
model_name="gemini-1.5-flash",
generation_config=generation_config,
safety_settings=safety_settings
)
# Test the connection
response = model.generate_content("Test connection")
logger.info("Successfully configured Gemini API")
except Exception as e:
logger.error(f"Failed to configure Gemini API: {str(e)}")
raise
# Updated prompt for dual-format report
prompt = """You are a professional campus facility inspector with over 15 years of experience in infrastructure assessment in India. Analyze the campus with total area of ${college_area} acres. Generate two reports based on the provided campus images:
+ The campus includes ${ground_count} grounds with a total area of ${ground_area} acres.
REPORT 1: EXECUTIVE SUMMARY TABLES
Table 1: Campus Overview
| Aspect | Grade | Key Observations | Priority Level |
|--------|-------|-----------------|----------------|
| Overall Infrastructure | (A+/A/B+/B/C) | • Key points | High/Medium/Low |
| Buildings | (A+/A/B+/B/C) | • Key points | High/Medium/Low |
| Roads & Parking | (A+/A/B+/B/C) | • Key points | High/Medium/Low |
| Sports Grounds (${ground_area} acres) | (A+/A/B+/B/C) | • Key points | High/Medium/Low |
| Canteens | (A+/A/B+/B/C) | • Key points | High/Medium/Low |
| Entry/Exit & Security | (A+/A/B+/B/C) | • Key points | High/Medium/Low |
| Environmental | (A+/A/B+/B/C) | • Key points | High/Medium/Low |
Table 2: Critical Issues and Solutions
| Area | Issue | Proposed Solution/Measures |
|------|-------|---------------------------|
| Area 1 | Description of issue | • Detailed solution steps |
| Area 2 | Description of issue | • Detailed solution steps |
REPORT 2: DETAILED ASSESSMENT
1. Overall Campus Analysis
A. Infrastructure Overview
- General campus layout and planning
- Common areas and circulation
- Campus-wide systems (drainage, lighting)
- Shared facilities condition
B. Safety & Security Assessment
- Boundary security
- Emergency systems
- Lighting and surveillance
- Fire safety measures
C. Environmental Analysis
- Green spaces and landscaping
- Water management
- Waste management
- Natural lighting and ventilation
D. Accessibility & Connectivity
- Internal roads and pathways
- Parking facilities
- Emergency access
- Campus connectivity
2. Area-wise Assessment
A. Buildings
- Overall condition
- Key features
- Notable issues
- Maintenance status
B. Roads & Parking
- Surface condition
- Traffic flow
- Parking adequacy
- Safety features
C. Sports Facilities
- Ground conditions
- Equipment status
- Safety measures
- Maintenance level
D. Canteens
- Structure condition
- Hygiene standards
- Ventilation
- Seating capacity
E. Entry/Exit Points
- Security measures
- Traffic management
- Access control
- Emergency preparedness
3. Campus Strengths
A. Infrastructure Strengths
- Notable features
- Well-maintained areas
- Effective systems
- Best practices observed
B. Enhancement Potential
- Areas showing excellence
- Opportunities for showcase
- Positive aspects to build upon
- Innovative features
4. Areas of Concern & Recommendations
A. Critical Issues
- Infrastructure gaps
- Safety concerns
- Maintenance needs
- Operational challenges
B. Improvement Measures
- Specific solutions
- Practical steps
- Enhancement strategies
- Preventive measures
5. Final Assessment
A. Overall Grade: [A+/A/B+/B/C]
Brief justification of the grade based on:
- Infrastructure quality
- Maintenance standards
- Safety measures
- Environmental aspects
B. Concluding Remarks
- Key takeaways
- Critical focus areas
- Positive highlights
- Path forward
Please focus on significant issues only and ignore minor cosmetic concerns. Consider local weather patterns (monsoon, summer) and regional building practices. Present information in clear, concise formats."""
@app.route('/')
def index():
return render_template('index.html')
def calculate_grade(grades, weights):
total_weight = sum(weights.values())
weighted_score = sum(grades[aspect] * weights[aspect] for aspect in grades)
average_score = weighted_score / total_weight
# Convert average score to a grade
if average_score >= 90:
return 'A+'
elif average_score >= 80:
return 'A'
elif average_score >= 70:
return 'B+'
elif average_score >= 60:
return 'B'
else:
return 'C'
def extract_grades(report_text):
# Dummy implementation for extracting grades from report text
# This should be replaced with actual logic to parse the report
return {
'Overall Infrastructure': 85,
'Buildings': 80,
'Roads & Parking': 75,
'Sports Facilities': 70,
'Canteens': 65,
'Entry/Exit & Security': 80,
'Environmental': 90
}
def extract_priority_distribution(report_text):
"""Extract priority distribution from the report text"""
try:
# Count priority levels from the Overview table
priorities = {
'High': 0,
'Medium': 0,
'Low': 0
}
# Look for priority levels in the Overview table
lines = report_text.split('\n')
for line in lines:
if '|' in line: # Table row
if 'High' in line:
priorities['High'] += 1
elif 'Medium' in line:
priorities['Medium'] += 1
elif 'Low' in line:
priorities['Low'] += 1
return [priorities['High'], priorities['Medium'], priorities['Low']]
except Exception as e:
logger.error(f"Error extracting priority distribution: {str(e)}")
return [30, 45, 25] # Default values if extraction fails
def extract_area_performance(report_text):
"""Extract performance scores for different areas"""
try:
# Extract scores from the Overview table
areas = {
'Buildings': 0,
'Roads & Parking': 0,
'Sports Facilities': 0,
'Canteens': 0,
'Security': 0,
'Environmental': 0
}
lines = report_text.split('\n')
for line in lines:
if '|' in line: # Table row
parts = line.split('|')
if len(parts) >= 2:
area = parts[1].strip()
if area in areas:
# Convert grade to numeric score
grade = parts[2].strip() if len(parts) > 2 else ''
score = {
'A+': 95,
'A': 85,
'B+': 75,
'B': 65,
'C': 55
}.get(grade, 70)
areas[area] = score
return list(areas.values())
except Exception as e:
logger.error(f"Error extracting area performance: {str(e)}")
return [85, 75, 70, 80, 90, 85] # Default values if extraction fails
def extract_maintenance_status(report_text):
"""Extract maintenance status distribution"""
try:
status = {
'Well Maintained': 0,
'Needs Attention': 0,
'Critical': 0
}
# Count maintenance status mentions in the report
well_maintained = report_text.lower().count('well maintained')
needs_attention = report_text.lower().count('needs attention') + report_text.lower().count('requires attention')
critical = report_text.lower().count('critical') + report_text.lower().count('urgent')
total = well_maintained + needs_attention + critical or 1 # Avoid division by zero
return [
int(well_maintained * 100 / total),
int(needs_attention * 100 / total),
int(critical * 100 / total)
]
except Exception as e:
logger.error(f"Error extracting maintenance status: {str(e)}")
return [60, 30, 10] # Default values if extraction fails
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
def generate_content_with_retry(prompt, images):
"""Generate content with retry logic"""
try:
response = model.generate_content(
[prompt] + images,
generation_config=genai.types.GenerationConfig(
# Remove timeout parameter
# Other generation config parameters can be added here if needed
)
)
return response
except Exception as e:
logger.error(f"Error generating content: {str(e)}")
raise
@app.route('/generate_report', methods=['POST'])
def generate_report():
try:
if not api_key:
raise ValueError("Google API key not configured")
data = request.json
images = data.get('images', [])
basic_info = data.get('basicInfo', {})
# Add file size validation
MAX_FILE_SIZE = 4 * 1024 * 1024 # 4MB
for image_data in images:
if len(base64.b64decode(image_data['data'].split(',')[1])) > MAX_FILE_SIZE:
return jsonify({'error': 'Image file size exceeds 4MB limit'}), 400
# Create image context with numbering
image_contexts = []
all_images = []
image_count = 1
for image_data in images:
if image_data['data'].startswith('data:image'):
image_data['data'] = image_data['data'].split(',')[1]
image_bytes = base64.b64decode(image_data['data'])
# Store image data for the report
image_context = {
'number': image_count,
'category': image_data['category'],
'data': image_bytes,
'mime_type': 'image/jpeg'
}
image_contexts.append(image_context)
# Add to list for API
all_images.append({
"mime_type": "image/jpeg",
"data": image_bytes
})
image_count += 1
# Update prompt with actual values
contextualized_prompt = prompt.replace('${college_area}', str(basic_info.get('collegeArea', '')))
contextualized_prompt = contextualized_prompt.replace('${building_count}', str(basic_info.get('buildingCount', '')))
contextualized_prompt = contextualized_prompt.replace('${parking_area}', str(basic_info.get('parkingCount', '')))
contextualized_prompt = contextualized_prompt.replace('${canteen_count}', str(basic_info.get('canteenCount', '')))
contextualized_prompt = contextualized_prompt.replace('${ground_count}', str(basic_info.get('groundCount', '')))
contextualized_prompt = contextualized_prompt.replace('${ground_area}', str(basic_info.get('groundArea', '')))
contextualized_prompt = contextualized_prompt.replace('${gate_count}', str(basic_info.get('gateCount', '')))
# Generate report with image references
response = generate_content_with_retry(
contextualized_prompt,
all_images
)
report_text = response.text
# Extract all metrics
grades = extract_grades(report_text)
priority_distribution = extract_priority_distribution(report_text)
area_performance = extract_area_performance(report_text)
maintenance_status = extract_maintenance_status(report_text)
# Calculate overall grade
weights = {
'Overall Infrastructure': 0.2,
'Buildings': 0.2,
'Roads & Parking': 0.15,
'Sports Facilities': 0.1,
'Canteens': 0.1,
'Entry/Exit & Security': 0.15,
'Environmental': 0.1
}
overall_grade = calculate_grade(grades, weights)
# Add metrics to the response
return jsonify({
'report': report_text,
'overallGrade': overall_grade,
'metrics': {
'priorityDistribution': priority_distribution,
'areaPerformance': area_performance,
'maintenanceStatus': maintenance_status
},
'images': [{
'number': img['number'],
'category': img['category'],
'data': base64.b64encode(img['data']).decode('utf-8')
} for img in image_contexts]
})
except ValueError as ve:
logger.error(f"Validation error: {str(ve)}")
return jsonify({'error': str(ve)}), 400
except Exception as e:
logger.error(f"Error generating report: {str(e)}")
return jsonify({'error': 'Internal server error occurred'}), 500
@app.route('/download_pdf', methods=['POST'])
def download_pdf():
pdf_buffer = None
try:
logger.debug("Received PDF download request")
html_content = request.json.get('html')
if not html_content:
raise ValueError("No HTML content provided")
logger.debug("Converting HTML to PDF")
# Create PDF in memory
pdf_buffer = BytesIO()
HTML(string=html_content).write_pdf(pdf_buffer)
pdf_buffer.seek(0)
logger.debug("Sending PDF file")
# Create a copy of the buffer contents
pdf_data = pdf_buffer.getvalue()
# Close the original buffer
if pdf_buffer:
pdf_buffer.close()
# Create a new buffer with the copied data
return_buffer = BytesIO(pdf_data)
return send_file(
return_buffer,
mimetype='application/pdf',
as_attachment=True,
download_name=f'campus-inspection-report-{datetime.now().strftime("%Y%m%d")}.pdf'
)
except Exception as e:
logger.error(f"Error generating PDF: {str(e)}")
return jsonify({'error': str(e)}), 500
finally:
# Clean up the original buffer if it exists
if pdf_buffer:
pdf_buffer.close()
def generate_report(findings, inspector_name, location, weather):
# Format timestamp
timestamp = datetime.now().strftime("%B %d, %Y at %I:%M %p")
# Ensure findings have all required fields and proper formatting
formatted_findings = []
for finding in findings:
formatted_finding = {
'title': finding.get('title', 'Untitled Finding'),
'description': finding.get('description', 'No description provided'),
'severity': finding.get('severity', 'Medium').capitalize(),
'recommendation': finding.get('recommendation', 'No recommendation provided'),
'image_path': finding.get('image_path', None)
}
formatted_findings.append(formatted_finding)
# Load and render template
template_loader = jinja2.FileSystemLoader('.')
template_env = jinja2.Environment(loader=template_loader)
template = template_env.get_template('campus-inspection-report.html')
html_content = template.render(
timestamp=timestamp,
inspector_name=inspector_name,
location=location,
weather=weather,
findings=formatted_findings
)
return html_content
@app.route('/health')
def health_check():
try:
# Simple test to verify API connection
response = model.generate_content("Test connection")
return jsonify({
'status': 'healthy',
'api_configured': True
})
except Exception as e:
logger.error(f"Health check failed: {str(e)}")
return jsonify({
'status': 'unhealthy',
'error': str(e)
}), 500
@app.route('/report_status/<task_id>')
def report_status(task_id):
"""Check the status of a report generation task"""
try:
# Implement status checking logic
return jsonify({
'status': 'processing',
'progress': 50, # Example progress percentage
'message': 'Processing images...'
})
except Exception as e:
logger.error(f"Error checking status: {str(e)}")
return jsonify({'error': str(e)}), 500
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860) |