File size: 25,627 Bytes
ee13964
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
import streamlit as st
import cv2
import numpy as np
from PIL import Image
from io import BytesIO
from cvzone.ClassificationModule import Classifier
import pandas as pd

# Set page configuration
st.set_page_config(page_title="Infrastructure Grading & Facility Verification", page_icon="πŸ—", layout="wide")

# Initialize session state variables if they don't exist
if 'total_score' not in st.session_state:
    st.session_state.total_score = 0
if 'facility_results' not in st.session_state:
    st.session_state.facility_results = []
if 'deficiencies' not in st.session_state:
    st.session_state.deficiencies = []
if 'verified_facilities' not in st.session_state:
    st.session_state.verified_facilities = set()
if 'facility_status' not in st.session_state:   
    st.session_state.facility_status = {}

# Streamlit app title with subheader
st.title("πŸ— Infrastructure Grading & Facility Verification System")

# Create tabs
tab1, tab2, tab3, tab4 = st.tabs(["πŸ“š College Info", "🏒 Facility Verification", "πŸ“Š Results", "❓ Help"])

# Define models dictionary
models = {
    "Restroom Model": ('Models/Restroom model/keras_model.h5',
                       'Models/Restroom model/labels.txt'),
    "Dispenser Model": ('Models/Dispenser model/keras_model.h5',
                        'Models/Dispenser model/labels.txt'),
    "Safety Equipment Model": ('Models/safety equipment model/keras_model.h5',
                               'Models/safety equipment model/labels.txt'),
    "Computer Lab Model": ('Models/computer lab model/keras_model.h5',
                           'Models/computer lab model/labels.txt'),
    "Server Room Model": ('Models/Server Room model/keras_model.h5',
                           'Models/Server Room model/labels.txt'),
    "Lab Equipment Model": ('Models/lab equipment model/keras_model.h5',
                            'Models/lab equipment model/labels.txt'),
    "Sports Equipment Model": ('Models/sports equipment model/keras_model.h5',
                               'Models/sports equipment model/labels.txt'),
    "Bicycle Stand Model": ('Models/bicycle stand model/keras_model.h5',
                            'Models/bicycle stand model/labels.txt'),
    "Medical Room Model": ('Models/Medical Room Model/keras_model.h5',
                               'Models/Medical Room Model/labels.txt'),
    "Workshop/Mechanical Lab Model": ('Models/workshop model/keras_model.h5',
                                      'Models/workshop model/labels.txt'),
    "Bus/Transport Model": ('Models/bus transport model/keras_model.h5',
                            'Models/bus transport model/labels.txt'),
    "COVID-19 Protocol Model": ('Models/COVID-19 protocol model/keras_model.h5',
                                'Models/COVID-19 protocol model/labels.txt'),
    "Canteen Model": ('Models/canteen model/keras_model.h5',
                      'Models/canteen model/labels.txt'),
    "CCTV Model": ('Models/CCTV model/keras_model.h5',
                   'Models/CCTV model/labels.txt'),
    "Classroom Model": ('Models/classroom model/keras_model.h5',
                        'Models/classroom model/labels.txt'),
    "Elearning Model": ('Models/elearning model/keras_model.h5',
                        'Models/elearning model/labels.txt'),
    "Faculty Cabin Model": ('Models/faculty cabin model/keras_model.h5',
                            'Models/faculty cabin model/labels.txt'),
    "Fire Extinguisher Model": ('Models/fire extinguisher model/keras_model.h5',
                                'Models/fire extinguisher model/labels.txt'),
    "Generator Model": ('Models/generator model/keras_model.h5',
                        'Models/generator model/labels.txt'),
    "Ground Model": ('Models/ground model (1)/keras_model.h5',
                     'Models/ground model (1)/labels.txt'),
    "Laptop Model": ('Models/laptop model/keras_model.h5',
                     'Models/laptop model/labels.txt'),
    "Library Model": ('Models/library model/keras_model.h5',
                      'Models/library model/labels.txt'),
    "Parking Model": ('Models/parking model/keras_model.h5',
                      'Models/parking model/labels.txt'),
    "Pothole Model": ('Models/pothole model/keras_model.h5',
                      'Models/pothole model/labels.txt'),
    "Seminar Hall Model": ('Models/seminar hall model/keras_model.h5',
                           'Models/seminar hall model/labels.txt'),
    "TPO Model": ('Models/tpo model/keras_model.h5',
                  'Models/tpo model/labels.txt'),
    "Audi Model": ('Models/Audi model/keras_model.h5',
                   'Models/Audi model/labels.txt'),
    "Conference Halls Model": ('Models/conference halls model/keras_model.h5',
                               'Models/conference halls model/labels.txt'),
    "Drawing Halls Model": ('Models/Drawing halls model/keras_model.h5',
                            'Models/Drawing halls model/labels.txt'),
}

# Function to handle input and image upload
def input_and_upload(label, min_value, default_value, model_name, model_path, labels_path):
    col1, col2 = st.columns(2)
    with col1:
        if isinstance(default_value, int):
            user_value = st.number_input(f"Number of {label}", min_value=min_value, value=int(default_value), step=1)
        else:
            user_value = st.number_input(f"Number of {label}", min_value=float(min_value), value=float(default_value), step=0.1)
    with col2:
        uploaded_files = st.file_uploader(f"Upload images for {label} (max {int(user_value)})", 
                                        type=["jpg", "jpeg", "png"], 
                                        accept_multiple_files=True)

    # Limit the number of processed files to user_value
    uploaded_files = uploaded_files[:int(user_value)] if uploaded_files else []

    score = 0
    if uploaded_files:
        score = classify_image(model_path, labels_path, uploaded_files, model_name)
        
        # Update the facility status immediately after classification
        if label not in st.session_state.verified_facilities and score > 0:
            st.session_state.verified_facilities.add(label)
            st.session_state.total_score = sum(
                data["Score"] 
                for data in st.session_state.facility_status.values()
            )

    return user_value, score


# Function to classify image
def classify_image(model_path, labels_path, uploaded_files, model_name):
    try:
        classifier = Classifier(model_path, labels_path)
        class_names = open(labels_path).read().splitlines()
    except FileNotFoundError:
        st.error(f"Model files for {model_name} not found. Please check the model path.")
        return 0
    except Exception as e:
        st.error(f"Error loading model {model_name}: {str(e)}")
        return 0
        
    score = 0

    # Create a grid layout for images
    cols = st.columns(3)  # Adjust the number of columns as needed

    for idx, uploaded_file in enumerate(uploaded_files):
        try:
            img = Image.open(BytesIO(uploaded_file.read()))
            img_array = np.array(img)

            # Convert to BGR if the image is RGB
            if img_array.shape[-1] == 3:
                img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)

            # Resize for prediction (but don't display this resized version)
            img_resized = cv2.resize(img_array, (224, 224))

            prediction = classifier.getPrediction(img_resized)
            class_id = prediction[1]
            class_name = class_names[class_id] if class_id < len(class_names) else "Unknown"

            # Display image and results in a compact format
            with cols[idx % 3]:
                st.image(img, use_column_width=True)
                if "no" in class_name.lower() or "not" in class_name.lower():
                    st.warning(f"{model_name} not verified.")
                else:
                    st.success(f"{model_name} is verified.")
                    score += 10

        except Exception as e:
            st.error(f"An error occurred: {e}")

    return score

# Grade calculation function
def calculate_grade(total_score, max_score):
    percentage = (total_score / max_score) * 100
    if percentage >= 80:
        return "A"
    elif percentage >= 60:
        return "B"
    elif percentage >= 40:
        return "C"
    else:
        return "D"

with tab1:
    st.markdown("### College Information")
    st.markdown("Enter the basic information about the college below:")

    # Create columns for a more compact layout
    col1, col2 = st.columns(2)

    with col1:
        num_divisions = st.number_input("Number of Divisions", min_value=1, value=1, help="Total number of divisions across all years")
        num_courses = st.number_input("Number of Courses", min_value=1, value=1, help="Total number of distinct courses offered")

    with col2:
        num_students = st.number_input("Total Students", min_value=1, value=100, help="Total number of students enrolled")
        course_duration = st.number_input("Course Duration (years)", min_value=1, value=4, help="Average duration of courses in years")

    # Calculations
    classroom_requirement = num_divisions * course_duration * 0.5

    # Lab logic based on student intake
    if num_students <= 600:
        first_year_labs = 4
    else:
        first_year_labs = 4 + (num_students - 600) // 150

    if num_students <= 180 * num_courses:
        labs_other_years = 2 * num_courses * (course_duration - 1)
    else:
        extra_students_per_course = (num_students - 180 * num_courses) // 50
        labs_other_years = 2 * num_courses * (course_duration - 1) + extra_students_per_course

    total_labs = first_year_labs + labs_other_years

    # Other facility requirements
    workshop_requirement = 1 + (num_students - 600) // 600 if num_students > 600 else 1
    cad_centre_requirement = 1 + (num_students - 600) // 600 if num_students > 600 else 1
    computer_centre_requirement = 1 + (num_students - 600) // 600 if num_students > 600 else 1
    seminar_hall_requirement = 1
    library_requirement = 1
    language_lab_requirement = 1
    pc_requirement = max(20, num_students // 10)

    st.markdown("### πŸ“Š Calculated Facility Requirements")
    
    # Create three columns for a more compact display of requirements
    col1, col2, col3 = st.columns(3)

    with col1:
        st.metric("Classrooms", f"{classroom_requirement:.1f}")
        st.metric("Total Labs", f"{total_labs}")
        st.metric("Workshops", f"{workshop_requirement}")

    with col2:
        st.metric("CAD Centres", f"{cad_centre_requirement}")
        st.metric("Computer Centres", f"{computer_centre_requirement}")
        st.metric("Seminar Halls", f"{seminar_hall_requirement}")

    with col3:
        st.metric("Libraries", f"{library_requirement}")
        st.metric("Language Labs", f"{language_lab_requirement}")
        st.metric("PC/Laptops", f"{pc_requirement}")

    st.info("β„Ή These calculations are based on standard educational infrastructure guidelines.")

# Input fields and image upload for each facility
facilities = [
    ("Classrooms", classroom_requirement, "Classroom Model"),
    ("Computer Labs", computer_centre_requirement, "Computer Lab Model"), #Done
    ("Workshops", workshop_requirement, "Workshop/Mechanical Lab Model"), # Done
    ("Drawing Halls", cad_centre_requirement, "Drawing Halls Model"), # Done
    ("Seminar Halls", seminar_hall_requirement, "Seminar Hall Model"), # Done
    ("Conference Halls", 1, "Conference Halls Model"), # done
    ("Auditorium", 1, "Audi Model"),
    ("Faculty Cabins", 1, "Faculty Cabin Model"),
    ("Security/CCTV", 1, "CCTV Model"), 
    ("House Keeping", 1, "Safety Equipment Model"), # to be done / store rooms can be done but not added yet
    ("Restrooms", 1, "Restroom Model"), # Done
    ("Canteens", 1, "Canteen Model"), 
    ("Server Room", 1, "Server Room Model"), # Done
    ("First Aid/Medical Room", 1, "Medical Room Model"), # done
    ("Gym/Sports Facilities", 1, "Sports Equipment Model"), #  done
    ("Language Labs", language_lab_requirement, "Computer Lab Model"), #done
    ("Water Coolers/Dispensers", 1, "Dispenser Model"), # done
    ("Generators", 1, "Generator Model"),
    ("TPO Office", 1, "TPO Model"),
    # Other supporting facilities
    ("Libraries", library_requirement, "Library Model"),
    ("PCs/Laptops", pc_requirement, "Laptop Model"),
    ("Bicycle Stands", 1, "Bicycle Stand Model"),
    ("Bus/Transport Facilities", 1, "Bus/Transport Model"),
    ("COVID-19 Protocol Measures", 1, "COVID-19 Protocol Model"),
    ("E-learning Facilities", 1, "Elearning Model"),
    ("Fire Extinguishers", 1, "Fire Extinguisher Model"),
    ("Grounds/Playgrounds", 1, "Ground Model"),
    ("Parking Areas", 1, "Parking Model"),
    ("Road Condition (Potholes)", 1, "Pothole Model"),
]

with tab2:
    st.markdown("### Facility Verification")
    st.markdown("Upload images for each facility to verify their existence and compliance.")

    # Reset scores and results when starting verification
    if st.button("πŸ”„ Reset Verification"):
        # Reset all session state variables
        st.session_state.total_score = 0
        st.session_state.facility_results = []
        st.session_state.deficiencies = []
        st.session_state.verified_facilities = set()
        st.session_state.facility_status = {}
        # Add a rerun to refresh the page
        st.rerun()

    # Create subtabs for different facility categories
    facility_tabs = st.tabs(["🏫 Academic", "πŸ”¬ Labs & Workshops", "πŸ“š Support Facilities", "πŸ₯ Essential Services"])
    
    # Define facility categories
    academic_facilities = [
        f for f in facilities 
        if any(name in f[0] for name in ["Classroom", "Faculty", "Drawing", "Seminar", "Conference", "Auditorium"])
    ]
    
    lab_facilities = [
        f for f in facilities 
        if any(name in f[0] for name in ["Computer Lab", "Workshop", "Language Lab", "Server"])
    ]
    
    support_facilities = [
        f for f in facilities 
        if any(name in f[0] for name in ["Library", "TPO", "E-learning", "Sport", "Ground"])
    ]
    
    essential_facilities = [
        f for f in facilities 
        if any(name in f[0] for name in ["Restroom", "Security", "CCTV", "Medical", "Water", "Fire", "Generator"])
    ]

    # Process facilities in each tab
    with facility_tabs[0]:  # Academic Facilities
        for facility, requirement, model_name in academic_facilities:
            st.markdown(f"#### {facility}")
            user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
            
            # Update facility status
            st.session_state.facility_status[facility] = {
                "Verified": int(user_value),
                "Required": int(requirement),
                "Score": score,
                "Status": "βœ… Met" if user_value >= requirement and score > 0 else "❌ Not Met"
            }
            
            # Only add score if not already verified
            if facility not in st.session_state.verified_facilities and score > 0:
                st.session_state.total_score += score
                st.session_state.verified_facilities.add(facility)
            
            if user_value < requirement:
                st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
            st.markdown("---")

    with facility_tabs[1]:  # Labs & Workshops
        for facility, requirement, model_name in lab_facilities:
            st.markdown(f"#### {facility}")
            user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
            
            # Update facility status
            st.session_state.facility_status[facility] = {
                "Verified": int(user_value),
                "Required": int(requirement),
                "Score": score,
                "Status": "βœ… Met" if user_value >= requirement and score > 0 else "❌ Not Met"
            }
            
            # Only add score if not already verified
            if facility not in st.session_state.verified_facilities and score > 0:
                st.session_state.total_score += score
                st.session_state.verified_facilities.add(facility)
            
            if user_value < requirement:
                st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
            st.markdown("---")

    with facility_tabs[2]:  # Support Facilities
        for facility, requirement, model_name in support_facilities:
            st.markdown(f"#### {facility}")
            user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
            
            # Update facility status
            st.session_state.facility_status[facility] = {
                "Verified": int(user_value),
                "Required": int(requirement),
                "Score": score,
                "Status": "βœ… Met" if user_value >= requirement and score > 0 else "❌ Not Met"
            }
            
            # Only add score if not already verified
            if facility not in st.session_state.verified_facilities and score > 0:
                st.session_state.total_score += score
                st.session_state.verified_facilities.add(facility)
            
            if user_value < requirement:
                st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
            st.markdown("---")

    with facility_tabs[3]:  # Essential Services
        for facility, requirement, model_name in essential_facilities:
            st.markdown(f"#### {facility}")
            user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
            
            # Update facility status
            st.session_state.facility_status[facility] = {
                "Verified": int(user_value),
                "Required": int(requirement),
                "Score": score,
                "Status": "βœ… Met" if user_value >= requirement and score > 0 else "❌ Not Met"
            }
            
            # Only add score if not already verified
            if facility not in st.session_state.verified_facilities and score > 0:
                st.session_state.total_score += score
                st.session_state.verified_facilities.add(facility)
            
            if user_value < requirement:
                st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
            st.markdown("---")

with tab3:
    st.markdown("### πŸ“Š Results Summary")
    
    # Calculate max possible score and verification progress
    max_score = len(facilities) * 10
    verified_count = len(st.session_state.verified_facilities)
    verification_progress = (verified_count / len(facilities)) * 100
    
    # Calculate grade based on total score
    current_grade = calculate_grade(st.session_state.total_score, max_score)
    
    # Create three columns for key metrics
    col1, col2, col3 = st.columns(3)
    
    with col1:
        st.markdown("#### Grade")
        st.markdown(f"<h2 style='text-align: center; color: {'green' if current_grade == 'A' else 'orange' if current_grade == 'B' else 'red'};'>{current_grade}</h2>", unsafe_allow_html=True)
    
    with col2:
        st.markdown("#### Score")
        st.markdown(f"<h2 style='text-align: center;'>{st.session_state.total_score}/{max_score}</h2>", unsafe_allow_html=True)
        st.progress(st.session_state.total_score / max_score)
    
    with col3:
        st.markdown("#### Verification Progress")
        st.markdown(f"<h2 style='text-align: center;'>{verification_progress:.1f}%</h2>", unsafe_allow_html=True)
        st.progress(verification_progress / 100)

    # Display facility status metrics
    if st.session_state.facility_status:
        st.markdown("### πŸ“‹ Facility Status Overview")
        
        # Calculate metrics
        total_facilities = len(st.session_state.facility_status)
        compliant_facilities = sum(1 for data in st.session_state.facility_status.values() if data["Status"] == "βœ… Met")
        non_compliant_facilities = total_facilities - compliant_facilities
        
        # Display metrics in columns
        metric_col1, metric_col2, metric_col3 = st.columns(3)
        with metric_col1:
            st.metric("Total Facilities", total_facilities)
        with metric_col2:
            st.metric("Compliant", compliant_facilities, delta=f"{(compliant_facilities/total_facilities)*100:.1f}%")
        with metric_col3:
            st.metric("Non-Compliant", non_compliant_facilities, delta=f"-{(non_compliant_facilities/total_facilities)*100:.1f}%")

        # Create tabs for different views of the results
        results_tab1, results_tab2 = st.tabs(["πŸ“Š Summary Table", "⚠️ Deficiencies"])
        
        with results_tab1:
            # Create DataFrame from facility_status
            summary_data = [
                {
                    "Facility": facility,
                    "Verified": data["Verified"],
                    "Required": data["Required"],
                    "Score": data["Score"],
                    "Status": data["Status"]
                }
                for facility, data in st.session_state.facility_status.items()
            ]
            
            summary_df = pd.DataFrame(summary_data)
            summary_df = summary_df[["Facility", "Verified", "Required", "Score", "Status"]]
            
            # Add color coding to the dataframe
            st.dataframe(
                summary_df.style
                .set_properties(**{
                    'background-color': 'white',
                    'color': 'black',
                    'border-color': 'lightgrey',
                    'text-align': 'center'
                })
                .apply(lambda x: ['background-color: #e6ffe6' if v == 'βœ… Met' else 'background-color: #ffe6e6' for v in x], subset=['Status'])
                .format({'Score': '{:.0f}'})
            )

        with results_tab2:
            # Display deficiencies with better formatting
            current_deficiencies = [
                (facility, data['Required'] - data['Verified'], data['Score'])
                for facility, data in st.session_state.facility_status.items()
                if data['Verified'] < data['Required'] or data['Score'] == 0
            ]
            
            if current_deficiencies:
                st.markdown("#### 🚨 Areas Needing Improvement")
                for facility, shortage, score in current_deficiencies:
                    if score == 0:
                        st.error(f"**{facility}**: Needs verification with proper images")
                    else:
                        st.error(f"**{facility}**: Requires {shortage} more unit{'s' if shortage > 1 else ''}")
                
                # Add recommendations
                st.markdown("#### πŸ’‘ Recommendations")
                st.info("""
                To improve your grade:
                1. Focus on addressing critical deficiencies first
                2. Prioritize essential facilities
                3. Document improvements with clear photographs
                4. Ensure all verifications are complete
                """)
            else:
                st.success("πŸŽ‰ Congratulations! All required facilities are met and verified.")

    else:
        # Show empty state
        st.info("πŸ‘‹ No facilities have been verified yet. Please complete the verification process in the Facility Verification tab.")
        st.markdown("""
        #### Getting Started:
        1. Go to the Facility Verification tab
        2. Upload images for each facility
        3. Complete the verification process
        4. Return here to view your results
        """)

with tab4:
    st.markdown("### How to Use This System")
    st.write("""
    1. **College Information Tab**
        - Enter basic college details
        - View calculated facility requirements
        
    2. **Facility Verification Tab**
        - Navigate through facility categories
        - Upload images for verification
        - Get instant verification results
        
    3. **Results Tab**
        - View overall grade and score
        - Check facility verification summary
        - Review any deficiencies
    """)

    st.markdown("### Grading Criteria")
    st.write("""
    **Grade A:** β‰₯ 80% (Excellent infrastructure and verification)
    **Grade B:** β‰₯ 60% (Good infrastructure with minor improvements needed)
    **Grade C:** β‰₯ 40% (Basic infrastructure present but needs significant improvements)
    **Grade D:** < 40% (Major infrastructure improvements required)
    """)

    st.markdown("### Note")
    st.info("This system uses machine learning models to verify facilities from uploaded images. Ensure that the images clearly show the relevant facility for accurate verification.")

    st.markdown("### Disclaimer")
    st.warning("This tool is for assessment purposes only. The final evaluation and accreditation of educational institutions should be conducted by authorized bodies following official guidelines and on-site inspections.")

# Footer
st.markdown("---")
st.markdown("Developed for educational infrastructure assessment purposes. For support or inquiries, please contact the system administrator.")