Spaces:
Sleeping
Sleeping
File size: 25,627 Bytes
ee13964 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import streamlit as st
import cv2
import numpy as np
from PIL import Image
from io import BytesIO
from cvzone.ClassificationModule import Classifier
import pandas as pd
# Set page configuration
st.set_page_config(page_title="Infrastructure Grading & Facility Verification", page_icon="π", layout="wide")
# Initialize session state variables if they don't exist
if 'total_score' not in st.session_state:
st.session_state.total_score = 0
if 'facility_results' not in st.session_state:
st.session_state.facility_results = []
if 'deficiencies' not in st.session_state:
st.session_state.deficiencies = []
if 'verified_facilities' not in st.session_state:
st.session_state.verified_facilities = set()
if 'facility_status' not in st.session_state:
st.session_state.facility_status = {}
# Streamlit app title with subheader
st.title("π Infrastructure Grading & Facility Verification System")
# Create tabs
tab1, tab2, tab3, tab4 = st.tabs(["π College Info", "π’ Facility Verification", "π Results", "β Help"])
# Define models dictionary
models = {
"Restroom Model": ('Models/Restroom model/keras_model.h5',
'Models/Restroom model/labels.txt'),
"Dispenser Model": ('Models/Dispenser model/keras_model.h5',
'Models/Dispenser model/labels.txt'),
"Safety Equipment Model": ('Models/safety equipment model/keras_model.h5',
'Models/safety equipment model/labels.txt'),
"Computer Lab Model": ('Models/computer lab model/keras_model.h5',
'Models/computer lab model/labels.txt'),
"Server Room Model": ('Models/Server Room model/keras_model.h5',
'Models/Server Room model/labels.txt'),
"Lab Equipment Model": ('Models/lab equipment model/keras_model.h5',
'Models/lab equipment model/labels.txt'),
"Sports Equipment Model": ('Models/sports equipment model/keras_model.h5',
'Models/sports equipment model/labels.txt'),
"Bicycle Stand Model": ('Models/bicycle stand model/keras_model.h5',
'Models/bicycle stand model/labels.txt'),
"Medical Room Model": ('Models/Medical Room Model/keras_model.h5',
'Models/Medical Room Model/labels.txt'),
"Workshop/Mechanical Lab Model": ('Models/workshop model/keras_model.h5',
'Models/workshop model/labels.txt'),
"Bus/Transport Model": ('Models/bus transport model/keras_model.h5',
'Models/bus transport model/labels.txt'),
"COVID-19 Protocol Model": ('Models/COVID-19 protocol model/keras_model.h5',
'Models/COVID-19 protocol model/labels.txt'),
"Canteen Model": ('Models/canteen model/keras_model.h5',
'Models/canteen model/labels.txt'),
"CCTV Model": ('Models/CCTV model/keras_model.h5',
'Models/CCTV model/labels.txt'),
"Classroom Model": ('Models/classroom model/keras_model.h5',
'Models/classroom model/labels.txt'),
"Elearning Model": ('Models/elearning model/keras_model.h5',
'Models/elearning model/labels.txt'),
"Faculty Cabin Model": ('Models/faculty cabin model/keras_model.h5',
'Models/faculty cabin model/labels.txt'),
"Fire Extinguisher Model": ('Models/fire extinguisher model/keras_model.h5',
'Models/fire extinguisher model/labels.txt'),
"Generator Model": ('Models/generator model/keras_model.h5',
'Models/generator model/labels.txt'),
"Ground Model": ('Models/ground model (1)/keras_model.h5',
'Models/ground model (1)/labels.txt'),
"Laptop Model": ('Models/laptop model/keras_model.h5',
'Models/laptop model/labels.txt'),
"Library Model": ('Models/library model/keras_model.h5',
'Models/library model/labels.txt'),
"Parking Model": ('Models/parking model/keras_model.h5',
'Models/parking model/labels.txt'),
"Pothole Model": ('Models/pothole model/keras_model.h5',
'Models/pothole model/labels.txt'),
"Seminar Hall Model": ('Models/seminar hall model/keras_model.h5',
'Models/seminar hall model/labels.txt'),
"TPO Model": ('Models/tpo model/keras_model.h5',
'Models/tpo model/labels.txt'),
"Audi Model": ('Models/Audi model/keras_model.h5',
'Models/Audi model/labels.txt'),
"Conference Halls Model": ('Models/conference halls model/keras_model.h5',
'Models/conference halls model/labels.txt'),
"Drawing Halls Model": ('Models/Drawing halls model/keras_model.h5',
'Models/Drawing halls model/labels.txt'),
}
# Function to handle input and image upload
def input_and_upload(label, min_value, default_value, model_name, model_path, labels_path):
col1, col2 = st.columns(2)
with col1:
if isinstance(default_value, int):
user_value = st.number_input(f"Number of {label}", min_value=min_value, value=int(default_value), step=1)
else:
user_value = st.number_input(f"Number of {label}", min_value=float(min_value), value=float(default_value), step=0.1)
with col2:
uploaded_files = st.file_uploader(f"Upload images for {label} (max {int(user_value)})",
type=["jpg", "jpeg", "png"],
accept_multiple_files=True)
# Limit the number of processed files to user_value
uploaded_files = uploaded_files[:int(user_value)] if uploaded_files else []
score = 0
if uploaded_files:
score = classify_image(model_path, labels_path, uploaded_files, model_name)
# Update the facility status immediately after classification
if label not in st.session_state.verified_facilities and score > 0:
st.session_state.verified_facilities.add(label)
st.session_state.total_score = sum(
data["Score"]
for data in st.session_state.facility_status.values()
)
return user_value, score
# Function to classify image
def classify_image(model_path, labels_path, uploaded_files, model_name):
try:
classifier = Classifier(model_path, labels_path)
class_names = open(labels_path).read().splitlines()
except FileNotFoundError:
st.error(f"Model files for {model_name} not found. Please check the model path.")
return 0
except Exception as e:
st.error(f"Error loading model {model_name}: {str(e)}")
return 0
score = 0
# Create a grid layout for images
cols = st.columns(3) # Adjust the number of columns as needed
for idx, uploaded_file in enumerate(uploaded_files):
try:
img = Image.open(BytesIO(uploaded_file.read()))
img_array = np.array(img)
# Convert to BGR if the image is RGB
if img_array.shape[-1] == 3:
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
# Resize for prediction (but don't display this resized version)
img_resized = cv2.resize(img_array, (224, 224))
prediction = classifier.getPrediction(img_resized)
class_id = prediction[1]
class_name = class_names[class_id] if class_id < len(class_names) else "Unknown"
# Display image and results in a compact format
with cols[idx % 3]:
st.image(img, use_column_width=True)
if "no" in class_name.lower() or "not" in class_name.lower():
st.warning(f"{model_name} not verified.")
else:
st.success(f"{model_name} is verified.")
score += 10
except Exception as e:
st.error(f"An error occurred: {e}")
return score
# Grade calculation function
def calculate_grade(total_score, max_score):
percentage = (total_score / max_score) * 100
if percentage >= 80:
return "A"
elif percentage >= 60:
return "B"
elif percentage >= 40:
return "C"
else:
return "D"
with tab1:
st.markdown("### College Information")
st.markdown("Enter the basic information about the college below:")
# Create columns for a more compact layout
col1, col2 = st.columns(2)
with col1:
num_divisions = st.number_input("Number of Divisions", min_value=1, value=1, help="Total number of divisions across all years")
num_courses = st.number_input("Number of Courses", min_value=1, value=1, help="Total number of distinct courses offered")
with col2:
num_students = st.number_input("Total Students", min_value=1, value=100, help="Total number of students enrolled")
course_duration = st.number_input("Course Duration (years)", min_value=1, value=4, help="Average duration of courses in years")
# Calculations
classroom_requirement = num_divisions * course_duration * 0.5
# Lab logic based on student intake
if num_students <= 600:
first_year_labs = 4
else:
first_year_labs = 4 + (num_students - 600) // 150
if num_students <= 180 * num_courses:
labs_other_years = 2 * num_courses * (course_duration - 1)
else:
extra_students_per_course = (num_students - 180 * num_courses) // 50
labs_other_years = 2 * num_courses * (course_duration - 1) + extra_students_per_course
total_labs = first_year_labs + labs_other_years
# Other facility requirements
workshop_requirement = 1 + (num_students - 600) // 600 if num_students > 600 else 1
cad_centre_requirement = 1 + (num_students - 600) // 600 if num_students > 600 else 1
computer_centre_requirement = 1 + (num_students - 600) // 600 if num_students > 600 else 1
seminar_hall_requirement = 1
library_requirement = 1
language_lab_requirement = 1
pc_requirement = max(20, num_students // 10)
st.markdown("### π Calculated Facility Requirements")
# Create three columns for a more compact display of requirements
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Classrooms", f"{classroom_requirement:.1f}")
st.metric("Total Labs", f"{total_labs}")
st.metric("Workshops", f"{workshop_requirement}")
with col2:
st.metric("CAD Centres", f"{cad_centre_requirement}")
st.metric("Computer Centres", f"{computer_centre_requirement}")
st.metric("Seminar Halls", f"{seminar_hall_requirement}")
with col3:
st.metric("Libraries", f"{library_requirement}")
st.metric("Language Labs", f"{language_lab_requirement}")
st.metric("PC/Laptops", f"{pc_requirement}")
st.info("βΉ These calculations are based on standard educational infrastructure guidelines.")
# Input fields and image upload for each facility
facilities = [
("Classrooms", classroom_requirement, "Classroom Model"),
("Computer Labs", computer_centre_requirement, "Computer Lab Model"), #Done
("Workshops", workshop_requirement, "Workshop/Mechanical Lab Model"), # Done
("Drawing Halls", cad_centre_requirement, "Drawing Halls Model"), # Done
("Seminar Halls", seminar_hall_requirement, "Seminar Hall Model"), # Done
("Conference Halls", 1, "Conference Halls Model"), # done
("Auditorium", 1, "Audi Model"),
("Faculty Cabins", 1, "Faculty Cabin Model"),
("Security/CCTV", 1, "CCTV Model"),
("House Keeping", 1, "Safety Equipment Model"), # to be done / store rooms can be done but not added yet
("Restrooms", 1, "Restroom Model"), # Done
("Canteens", 1, "Canteen Model"),
("Server Room", 1, "Server Room Model"), # Done
("First Aid/Medical Room", 1, "Medical Room Model"), # done
("Gym/Sports Facilities", 1, "Sports Equipment Model"), # done
("Language Labs", language_lab_requirement, "Computer Lab Model"), #done
("Water Coolers/Dispensers", 1, "Dispenser Model"), # done
("Generators", 1, "Generator Model"),
("TPO Office", 1, "TPO Model"),
# Other supporting facilities
("Libraries", library_requirement, "Library Model"),
("PCs/Laptops", pc_requirement, "Laptop Model"),
("Bicycle Stands", 1, "Bicycle Stand Model"),
("Bus/Transport Facilities", 1, "Bus/Transport Model"),
("COVID-19 Protocol Measures", 1, "COVID-19 Protocol Model"),
("E-learning Facilities", 1, "Elearning Model"),
("Fire Extinguishers", 1, "Fire Extinguisher Model"),
("Grounds/Playgrounds", 1, "Ground Model"),
("Parking Areas", 1, "Parking Model"),
("Road Condition (Potholes)", 1, "Pothole Model"),
]
with tab2:
st.markdown("### Facility Verification")
st.markdown("Upload images for each facility to verify their existence and compliance.")
# Reset scores and results when starting verification
if st.button("π Reset Verification"):
# Reset all session state variables
st.session_state.total_score = 0
st.session_state.facility_results = []
st.session_state.deficiencies = []
st.session_state.verified_facilities = set()
st.session_state.facility_status = {}
# Add a rerun to refresh the page
st.rerun()
# Create subtabs for different facility categories
facility_tabs = st.tabs(["π« Academic", "π¬ Labs & Workshops", "π Support Facilities", "π₯ Essential Services"])
# Define facility categories
academic_facilities = [
f for f in facilities
if any(name in f[0] for name in ["Classroom", "Faculty", "Drawing", "Seminar", "Conference", "Auditorium"])
]
lab_facilities = [
f for f in facilities
if any(name in f[0] for name in ["Computer Lab", "Workshop", "Language Lab", "Server"])
]
support_facilities = [
f for f in facilities
if any(name in f[0] for name in ["Library", "TPO", "E-learning", "Sport", "Ground"])
]
essential_facilities = [
f for f in facilities
if any(name in f[0] for name in ["Restroom", "Security", "CCTV", "Medical", "Water", "Fire", "Generator"])
]
# Process facilities in each tab
with facility_tabs[0]: # Academic Facilities
for facility, requirement, model_name in academic_facilities:
st.markdown(f"#### {facility}")
user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
# Update facility status
st.session_state.facility_status[facility] = {
"Verified": int(user_value),
"Required": int(requirement),
"Score": score,
"Status": "β
Met" if user_value >= requirement and score > 0 else "β Not Met"
}
# Only add score if not already verified
if facility not in st.session_state.verified_facilities and score > 0:
st.session_state.total_score += score
st.session_state.verified_facilities.add(facility)
if user_value < requirement:
st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
st.markdown("---")
with facility_tabs[1]: # Labs & Workshops
for facility, requirement, model_name in lab_facilities:
st.markdown(f"#### {facility}")
user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
# Update facility status
st.session_state.facility_status[facility] = {
"Verified": int(user_value),
"Required": int(requirement),
"Score": score,
"Status": "β
Met" if user_value >= requirement and score > 0 else "β Not Met"
}
# Only add score if not already verified
if facility not in st.session_state.verified_facilities and score > 0:
st.session_state.total_score += score
st.session_state.verified_facilities.add(facility)
if user_value < requirement:
st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
st.markdown("---")
with facility_tabs[2]: # Support Facilities
for facility, requirement, model_name in support_facilities:
st.markdown(f"#### {facility}")
user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
# Update facility status
st.session_state.facility_status[facility] = {
"Verified": int(user_value),
"Required": int(requirement),
"Score": score,
"Status": "β
Met" if user_value >= requirement and score > 0 else "β Not Met"
}
# Only add score if not already verified
if facility not in st.session_state.verified_facilities and score > 0:
st.session_state.total_score += score
st.session_state.verified_facilities.add(facility)
if user_value < requirement:
st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
st.markdown("---")
with facility_tabs[3]: # Essential Services
for facility, requirement, model_name in essential_facilities:
st.markdown(f"#### {facility}")
user_value, score = input_and_upload(facility, 0, requirement, model_name, *models[model_name])
# Update facility status
st.session_state.facility_status[facility] = {
"Verified": int(user_value),
"Required": int(requirement),
"Score": score,
"Status": "β
Met" if user_value >= requirement and score > 0 else "β Not Met"
}
# Only add score if not already verified
if facility not in st.session_state.verified_facilities and score > 0:
st.session_state.total_score += score
st.session_state.verified_facilities.add(facility)
if user_value < requirement:
st.session_state.deficiencies.append(f"{facility} requires {int(requirement - user_value)} more.")
st.markdown("---")
with tab3:
st.markdown("### π Results Summary")
# Calculate max possible score and verification progress
max_score = len(facilities) * 10
verified_count = len(st.session_state.verified_facilities)
verification_progress = (verified_count / len(facilities)) * 100
# Calculate grade based on total score
current_grade = calculate_grade(st.session_state.total_score, max_score)
# Create three columns for key metrics
col1, col2, col3 = st.columns(3)
with col1:
st.markdown("#### Grade")
st.markdown(f"<h2 style='text-align: center; color: {'green' if current_grade == 'A' else 'orange' if current_grade == 'B' else 'red'};'>{current_grade}</h2>", unsafe_allow_html=True)
with col2:
st.markdown("#### Score")
st.markdown(f"<h2 style='text-align: center;'>{st.session_state.total_score}/{max_score}</h2>", unsafe_allow_html=True)
st.progress(st.session_state.total_score / max_score)
with col3:
st.markdown("#### Verification Progress")
st.markdown(f"<h2 style='text-align: center;'>{verification_progress:.1f}%</h2>", unsafe_allow_html=True)
st.progress(verification_progress / 100)
# Display facility status metrics
if st.session_state.facility_status:
st.markdown("### π Facility Status Overview")
# Calculate metrics
total_facilities = len(st.session_state.facility_status)
compliant_facilities = sum(1 for data in st.session_state.facility_status.values() if data["Status"] == "β
Met")
non_compliant_facilities = total_facilities - compliant_facilities
# Display metrics in columns
metric_col1, metric_col2, metric_col3 = st.columns(3)
with metric_col1:
st.metric("Total Facilities", total_facilities)
with metric_col2:
st.metric("Compliant", compliant_facilities, delta=f"{(compliant_facilities/total_facilities)*100:.1f}%")
with metric_col3:
st.metric("Non-Compliant", non_compliant_facilities, delta=f"-{(non_compliant_facilities/total_facilities)*100:.1f}%")
# Create tabs for different views of the results
results_tab1, results_tab2 = st.tabs(["π Summary Table", "β οΈ Deficiencies"])
with results_tab1:
# Create DataFrame from facility_status
summary_data = [
{
"Facility": facility,
"Verified": data["Verified"],
"Required": data["Required"],
"Score": data["Score"],
"Status": data["Status"]
}
for facility, data in st.session_state.facility_status.items()
]
summary_df = pd.DataFrame(summary_data)
summary_df = summary_df[["Facility", "Verified", "Required", "Score", "Status"]]
# Add color coding to the dataframe
st.dataframe(
summary_df.style
.set_properties(**{
'background-color': 'white',
'color': 'black',
'border-color': 'lightgrey',
'text-align': 'center'
})
.apply(lambda x: ['background-color: #e6ffe6' if v == 'β
Met' else 'background-color: #ffe6e6' for v in x], subset=['Status'])
.format({'Score': '{:.0f}'})
)
with results_tab2:
# Display deficiencies with better formatting
current_deficiencies = [
(facility, data['Required'] - data['Verified'], data['Score'])
for facility, data in st.session_state.facility_status.items()
if data['Verified'] < data['Required'] or data['Score'] == 0
]
if current_deficiencies:
st.markdown("#### π¨ Areas Needing Improvement")
for facility, shortage, score in current_deficiencies:
if score == 0:
st.error(f"**{facility}**: Needs verification with proper images")
else:
st.error(f"**{facility}**: Requires {shortage} more unit{'s' if shortage > 1 else ''}")
# Add recommendations
st.markdown("#### π‘ Recommendations")
st.info("""
To improve your grade:
1. Focus on addressing critical deficiencies first
2. Prioritize essential facilities
3. Document improvements with clear photographs
4. Ensure all verifications are complete
""")
else:
st.success("π Congratulations! All required facilities are met and verified.")
else:
# Show empty state
st.info("π No facilities have been verified yet. Please complete the verification process in the Facility Verification tab.")
st.markdown("""
#### Getting Started:
1. Go to the Facility Verification tab
2. Upload images for each facility
3. Complete the verification process
4. Return here to view your results
""")
with tab4:
st.markdown("### How to Use This System")
st.write("""
1. **College Information Tab**
- Enter basic college details
- View calculated facility requirements
2. **Facility Verification Tab**
- Navigate through facility categories
- Upload images for verification
- Get instant verification results
3. **Results Tab**
- View overall grade and score
- Check facility verification summary
- Review any deficiencies
""")
st.markdown("### Grading Criteria")
st.write("""
**Grade A:** β₯ 80% (Excellent infrastructure and verification)
**Grade B:** β₯ 60% (Good infrastructure with minor improvements needed)
**Grade C:** β₯ 40% (Basic infrastructure present but needs significant improvements)
**Grade D:** < 40% (Major infrastructure improvements required)
""")
st.markdown("### Note")
st.info("This system uses machine learning models to verify facilities from uploaded images. Ensure that the images clearly show the relevant facility for accurate verification.")
st.markdown("### Disclaimer")
st.warning("This tool is for assessment purposes only. The final evaluation and accreditation of educational institutions should be conducted by authorized bodies following official guidelines and on-site inspections.")
# Footer
st.markdown("---")
st.markdown("Developed for educational infrastructure assessment purposes. For support or inquiries, please contact the system administrator.") |