File size: 45,829 Bytes
9fa8759 95d72ec 9fa8759 95d72ec 9fa8759 95d72ec 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 3e5bf0c 9fa8759 d870f80 5f43637 3c44bfc 3e5bf0c 3c44bfc 5f43637 9fa8759 d870f80 3c44bfc d870f80 3c44bfc d870f80 3c44bfc 3e5bf0c 3c44bfc 3e5bf0c 3c44bfc 3e5bf0c 3c44bfc 3e5bf0c 3c44bfc 95d72ec 3c44bfc d870f80 9fa8759 d870f80 95d72ec 9fa8759 95d72ec d870f80 9fa8759 95d72ec 9fa8759 95d72ec 9fa8759 3e5bf0c 9fa8759 95d72ec 9fa8759 3e5bf0c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 |
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import json
from flask import Flask, render_template, request, session, send_file
import pandas as pd
import os
import io
import base64
import numpy as np
from datetime import datetime
from weasyprint import HTML
import tempfile
import warnings
import secrets
from typing import Dict, List, Tuple
app = Flask(__name__)
app.secret_key = secrets.token_hex(16) # Generates a secure random key
app.config['SESSION_TYPE'] = 'filesystem'
warnings.filterwarnings('ignore')
# Add custom filter for number formatting
@app.template_filter('format_number')
def format_number(value):
"""Format number with commas as thousand separators"""
try:
return "{:,}".format(int(value))
except (ValueError, TypeError):
return value
# Directory to store generated images
plot_dir = 'static/plots'
os.makedirs(plot_dir, exist_ok=True)
def save_plot(fig, plots_dict, plot_name):
"""Convert Plotly figure to HTML and add to plots dictionary."""
try:
plot_html = fig.to_html(full_html=False, include_plotlyjs='cdn')
plots_dict[plot_name] = plot_html
except Exception as e:
print(f"Error saving plot {plot_name}: {str(e)}")
@app.route('/')
def index():
"""Render the main page."""
return render_template('index.html')
from flask import jsonify
@app.route('/analyze', methods=['POST'])
def analyze():
"""Handle file upload and store data for later analysis."""
if 'file' not in request.files:
return render_template('index.html', error='No file uploaded')
file = request.files['file']
if file.filename == '':
return render_template('index.html', error='No file selected')
if not file.filename.lower().endswith('.csv'):
return render_template('index.html', error='Only CSV files are allowed')
try:
# Read and validate the CSV file
data = pd.read_csv(file, encoding='utf-8')
validate_data(data)
# Show questionnaire without analysis
return render_template('index.html',
show_scholarship_questionnaire=True,
file_uploaded=True
)
except Exception as e:
return render_template('index.html', error=f'An error occurred: {str(e)}')
def validate_data(data):
"""Validate the uploaded data."""
if data.empty:
raise ValueError("The uploaded file is empty")
required_columns = [
'Category', 'Scholarship Name', 'Eligibility', 'Benefits',
'Provider', 'Year', 'Number of Beneficiaries',
'Total Students Eligible', 'Percentage Benefited'
]
missing_columns = [col for col in required_columns if col not in data.columns]
if missing_columns:
raise ValueError(f"Missing required columns: {', '.join(missing_columns)}")
# Validate numeric columns
numeric_columns = ['Number of Beneficiaries', 'Total Students Eligible', 'Percentage Benefited']
for col in numeric_columns:
if not pd.to_numeric(data[col], errors='coerce').notnull().all():
raise ValueError(f"Column '{col}' contains invalid numeric values")
return True
def perform_scholarship_swot(data):
"""Perform SWOT analysis for scholarship data."""
swot = {
'strengths': [],
'weaknesses': [],
'opportunities': [],
'threats': []
}
total_beneficiaries = data['Number of Beneficiaries'].sum()
total_eligible = data['Total Students Eligible'].sum()
coverage_rate = (total_beneficiaries / total_eligible) * 100
# Analyze coverage rate and add to appropriate category
if coverage_rate >= 75:
swot['strengths'].append(f"High coverage rate of {coverage_rate:.1f}%")
elif coverage_rate >= 50:
swot['opportunities'].append(f"Room to improve coverage rate (currently {coverage_rate:.1f}%)")
swot['weaknesses'].append(f"Moderate coverage rate needs improvement ({coverage_rate:.1f}%)")
else:
swot['weaknesses'].append(f"Low coverage rate of {coverage_rate:.1f}%")
# Analyze year-over-year growth
yearly_beneficiaries = data.groupby('Year')['Number of Beneficiaries'].sum()
if len(yearly_beneficiaries) > 1:
growth_rate = ((yearly_beneficiaries.iloc[-1] / yearly_beneficiaries.iloc[0]) - 1) * 100
if growth_rate > 20:
swot['strengths'].append(f"Strong growth in beneficiaries ({growth_rate:.1f}% overall)")
elif growth_rate > 0:
swot['opportunities'].append(f"Moderate growth can be improved ({growth_rate:.1f}% overall)")
else:
swot['weaknesses'].append(f"Negative growth in beneficiaries ({growth_rate:.1f}% overall)")
swot['threats'].append("Declining participation trend")
# Analyze provider diversity
provider_count = data['Provider'].nunique()
if provider_count > 5:
swot['strengths'].append(f"Diverse range of providers ({provider_count} different providers)")
else:
swot['weaknesses'].append(f"Limited provider diversity (only {provider_count} providers)")
swot['opportunities'].append("Potential to expand provider network")
# Analyze category distribution
category_dist = data.groupby('Category')['Number of Beneficiaries'].sum()
max_category_pct = (category_dist.max() / total_beneficiaries) * 100
min_category_pct = (category_dist.min() / total_beneficiaries) * 100
if max_category_pct > 40:
swot['weaknesses'].append(f"Uneven distribution across categories (highest: {max_category_pct:.1f}%)")
if min_category_pct < 10:
swot['weaknesses'].append(f"Underrepresented categories (lowest: {min_category_pct:.1f}%)")
# Analyze utilization rates
utilization_rates = (data['Number of Beneficiaries'] / data['Total Students Eligible']) * 100
low_util_count = (utilization_rates < 30).sum()
if low_util_count > 0:
swot['weaknesses'].append(f"Low utilization in {low_util_count} scholarship programs")
# Add general insights
swot['opportunities'].append("Potential for new scholarship categories")
swot['threats'].extend([
"Changes in funding availability may affect program sustainability",
"Increasing competition for limited scholarship resources",
"Changing eligibility criteria may affect accessibility"
])
return swot
@app.route('/analyze_diversity', methods=['POST'])
def analyze_diversity():
"""Handle diversity file upload and store data."""
if 'file' not in request.files:
return render_template('index.html', error='No file uploaded')
file = request.files['file']
if file.filename == '':
return render_template('index.html', error='No file selected')
try:
data = pd.read_csv(file, encoding='utf-8')
required_columns = ['Gender', 'Category', 'Branch']
missing_columns = [col for col in required_columns if col not in data.columns]
if missing_columns:
return render_template('index.html',
error=f'Missing required columns: {", ".join(missing_columns)}')
# Show questionnaire without analysis
return render_template('index.html',
show_diversity_questionnaire=True,
file_uploaded=True
)
except Exception as e:
return render_template('index.html', error=f'An error occurred: {str(e)}')
def generate_scholarship_plots(data):
"""Generate Plotly plots for scholarship data."""
plots = {}
try:
# Trend Analysis
beneficiaries_trend = data.groupby('Year')['Number of Beneficiaries'].sum().reset_index()
if not beneficiaries_trend.empty:
fig = px.line(beneficiaries_trend,
x='Year',
y='Number of Beneficiaries',
markers=True,
title='Trend of Scholarship Beneficiaries Over Years')
fig.update_layout(
template='plotly_white',
xaxis_title='Year',
yaxis_title='Number of Beneficiaries'
)
save_plot(fig, plots, 'trend_analysis')
# Category Distribution
category_data = data.groupby('Category')['Number of Beneficiaries'].sum()
fig = px.pie(values=category_data.values,
names=category_data.index,
title='Scholarship Distribution by Category')
fig.update_layout(template='plotly_white')
save_plot(fig, plots, 'category_distribution')
# Provider Distribution
provider_data = data.groupby('Provider')['Number of Beneficiaries'].sum()
fig = px.bar(x=provider_data.index,
y=provider_data.values,
title='Distribution by Scholarship Provider')
fig.update_layout(
template='plotly_white',
xaxis_title='Provider',
yaxis_title='Number of Beneficiaries',
xaxis_tickangle=45
)
save_plot(fig, plots, 'provider_distribution')
except Exception as e:
print(f"Error in generate_scholarship_plots: {str(e)}")
return plots
def generate_diversity_plots(data):
"""Generate Plotly plots for diversity data."""
plots = {}
try:
# Gender distribution with average percentile
gender_percentile = data.groupby('Gender')['Percentile_obtained_in_entrance'].mean()
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Add bar chart for count
gender_counts = data['Gender'].value_counts()
fig.add_trace(
go.Bar(x=gender_counts.index, y=gender_counts.values, name="Count"),
secondary_y=False
)
# Add line chart for average percentile
fig.add_trace(
go.Scatter(x=gender_percentile.index, y=gender_percentile.values,
name="Avg. Percentile", line=dict(color='red')),
secondary_y=True
)
fig.update_layout(
title='Gender Distribution and Average Entrance Percentile',
template='plotly_white',
barmode='group'
)
fig.update_yaxes(title_text="Number of Students", secondary_y=False)
fig.update_yaxes(title_text="Average Entrance Percentile", secondary_y=True)
save_plot(fig, plots, 'gender_distribution')
# Branch distribution with performance metrics
branch_metrics = data.groupby('Branch').agg({
'Percentile_obtained_in_entrance': 'mean',
'Board_Percentage': 'mean'
}).round(2)
fig = make_subplots(specs=[[{"secondary_y": True}]])
# Add bar chart for entrance percentile
fig.add_trace(
go.Bar(x=branch_metrics.index,
y=branch_metrics['Percentile_obtained_in_entrance'],
name="Entrance Percentile"),
secondary_y=False
)
# Add line chart for board percentage
fig.add_trace(
go.Scatter(x=branch_metrics.index,
y=branch_metrics['Board_Percentage'],
name="Board %", line=dict(color='red')),
secondary_y=True
)
fig.update_layout(
title='Branch-wise Performance Metrics',
template='plotly_white',
xaxis_tickangle=45
)
fig.update_yaxes(title_text="Average Entrance Percentile", secondary_y=False)
fig.update_yaxes(title_text="Average Board Percentage", secondary_y=True)
save_plot(fig, plots, 'branch_distribution')
# Category-wise performance box plot
fig = go.Figure()
fig.add_trace(go.Box(
x=data['Category'],
y=data['Percentile_obtained_in_entrance'],
name='Entrance Percentile'
))
fig.update_layout(
title='Category-wise Entrance Percentile Distribution',
template='plotly_white',
yaxis_title='Entrance Percentile',
xaxis_title='Category'
)
save_plot(fig, plots, 'category_distribution')
# Performance correlation heatmap
numeric_cols = ['Percentile_obtained_in_entrance', 'Board_Percentage']
corr_matrix = data[numeric_cols].corr()
fig = go.Figure(data=go.Heatmap(
z=corr_matrix.values,
x=corr_matrix.columns,
y=corr_matrix.columns,
colorscale='RdBu',
zmin=-1, zmax=1
))
fig.update_layout(
title='Performance Correlation Matrix',
template='plotly_white'
)
save_plot(fig, plots, 'correlation_matrix')
except Exception as e:
print(f"Error in generate_diversity_plots: {str(e)}")
return plots
def analyze_performance(data):
"""Analyze strengths and weaknesses of the scholarship program."""
insights = {
'strengths': [],
'weaknesses': [],
'improvements': []
}
# Calculate key metrics
total_beneficiaries = data['Number of Beneficiaries'].sum()
total_eligible = data['Total Students Eligible'].sum()
coverage_rate = (total_beneficiaries / total_eligible) * 100
# Coverage Rate Analysis
if coverage_rate >= 75:
insights['strengths'].append(f"Exceptional coverage rate of {coverage_rate:.1f}%")
elif coverage_rate >= 50:
insights['strengths'].append(f"Good coverage rate of {coverage_rate:.1f}%")
else:
insights['weaknesses'].append(f"Low coverage rate of {coverage_rate:.1f}%")
insights['improvements'].append("Implement awareness campaigns to increase scholarship applications")
# Year-over-Year Growth Analysis
yearly_data = data.groupby('Year')['Number of Beneficiaries'].sum()
if len(yearly_data) > 1:
yoy_growth = ((yearly_data.iloc[-1] - yearly_data.iloc[0]) / yearly_data.iloc[0]) * 100
if yoy_growth > 0:
insights['strengths'].append(f"Positive growth in beneficiaries ({yoy_growth:.1f}% overall)")
else:
insights['weaknesses'].append(f"Declining number of beneficiaries ({abs(yoy_growth):.1f}% decrease)")
insights['improvements'].append("Review and revise scholarship allocation strategy")
# Provider Analysis
provider_count = data['Provider'].nunique()
if provider_count > 10:
insights['strengths'].append(f"Diverse range of scholarship providers ({provider_count} providers)")
else:
insights['weaknesses'].append(f"Limited number of scholarship providers ({provider_count} providers)")
insights['improvements'].append("Engage with more institutions and organizations for scholarship partnerships")
# Category Distribution Analysis
category_dist = data.groupby('Category')['Number of Beneficiaries'].sum()
max_category_pct = (category_dist.max() / total_beneficiaries) * 100
if max_category_pct > 50:
insights['weaknesses'].append(f"Uneven distribution across categories (max {max_category_pct:.1f}% in one category)")
insights['improvements'].append("Balance scholarship distribution across different categories")
else:
insights['strengths'].append("Well-balanced distribution across categories")
# Eligibility vs Beneficiaries Analysis
utilization_rates = (data['Number of Beneficiaries'] / data['Total Students Eligible']) * 100
low_util_count = (utilization_rates < 30).sum()
if low_util_count > 0:
insights['weaknesses'].append(f"{low_util_count} scholarships have utilization rates below 30%")
insights['improvements'].append("Review eligibility criteria for low-utilization scholarships")
# Additional Improvements
insights['improvements'].extend([
"Develop targeted outreach programs for underrepresented groups",
"Streamline application process to increase accessibility",
"Implement regular feedback mechanisms from beneficiaries"
])
return insights
def perform_swot_analysis(data):
"""Perform SWOT analysis on the diversity dataset."""
swot = {
'strengths': [],
'weaknesses': [],
'opportunities': [],
'threats': []
}
try:
# Gender diversity analysis
gender_dist = data['Gender'].value_counts(normalize=True) * 100
female_ratio = gender_dist.get('Female', 0)
if female_ratio >= 40:
swot['strengths'].append(f"Strong gender diversity with {female_ratio:.1f}% female students")
swot['strengths'].append("Above average female representation in STEM fields")
elif female_ratio >= 30:
swot['opportunities'].append(f"Potential to improve gender diversity (currently {female_ratio:.1f}% female students)")
swot['opportunities'].append("Implement targeted recruitment for female students")
else:
swot['weaknesses'].append(f"Low gender diversity with only {female_ratio:.1f}% female students")
swot['threats'].append("Risk of gender imbalance affecting campus culture")
# Performance analysis
avg_percentile = data['Percentile_obtained_in_entrance'].mean()
std_percentile = data['Percentile_obtained_in_entrance'].std()
if avg_percentile >= 80:
swot['strengths'].append(f"High average entrance percentile ({avg_percentile:.1f})")
swot['strengths'].append("Strong academic caliber of incoming students")
elif avg_percentile < 60:
swot['weaknesses'].append(f"Low average entrance percentile ({avg_percentile:.1f})")
swot['threats'].append("May affect institution's academic reputation")
if std_percentile > 20:
swot['weaknesses'].append("High variability in student performance")
swot['opportunities'].append("Implement targeted academic support programs")
# Category representation
category_dist = data['Category'].value_counts(normalize=True) * 100
for category, percentage in category_dist.items():
if percentage < 10:
swot['weaknesses'].append(f"Low representation of {category} category ({percentage:.1f}%)")
swot['opportunities'].append(f"Increase outreach to {category} category students")
swot['threats'].append(f"Risk of {category} category underrepresentation")
# Branch distribution
branch_dist = data['Branch'].value_counts(normalize=True) * 100
branches_above_25 = branch_dist[branch_dist > 25].index.tolist()
branches_below_10 = branch_dist[branch_dist < 10].index.tolist()
if branches_above_25:
swot['strengths'].append(f"Strong presence in: {', '.join(branches_above_25)}")
swot['threats'].append("Over-dependence on specific branches")
if branches_below_10:
swot['opportunities'].append(f"Potential for growth in: {', '.join(branches_below_10)}")
swot['weaknesses'].append(f"Limited presence in: {', '.join(branches_below_10)}")
# Performance correlation
corr = data['Percentile_obtained_in_entrance'].corr(data['Board_Percentage'])
if corr > 0.7:
swot['strengths'].append("Strong correlation between board and entrance performance")
swot['strengths'].append("Consistent academic performance across evaluations")
elif corr < 0.3:
swot['weaknesses'].append("Weak correlation between board and entrance performance")
swot['opportunities'].append("Investigate factors affecting performance inconsistency")
swot['threats'].append("Unpredictable student performance patterns")
# Additional general insights
swot['opportunities'].extend([
"Develop mentorship programs for underrepresented groups",
"Implement cross-branch collaborative programs",
"Create targeted support systems for struggling students"
])
swot['threats'].extend([
"Increasing competition from other institutions",
"Changing diversity trends in higher education",
"Resource allocation challenges across diverse student needs"
])
except Exception as e:
print(f"Error in perform_swot_analysis: {str(e)}")
swot['weaknesses'].append("Error in data analysis")
return swot
def generate_diversity_insights(data):
"""Generate insights from diversity data."""
insights = []
# Total student count (each row represents a student)
total_students = len(data)
insights.append(f"Total number of students: {total_students:,}")
# Gender distribution
if 'Gender' in data.columns:
gender_dist = data['Gender'].value_counts()
for gender, count in gender_dist.items():
percentage = (count/total_students) * 100
insights.append(f"{gender}: {count:,} students ({percentage:.1f}%)")
# Branch distribution
if 'Branch' in data.columns:
branch_dist = data['Branch'].value_counts()
insights.append("\nTop 3 branches by enrollment:")
for branch, count in branch_dist.nlargest(3).items():
percentage = (count/total_students) * 100
insights.append(f"{branch}: {count:,} students ({percentage:.1f}%)")
# Category insights
if 'Category' in data.columns:
category_dist = data['Category'].value_counts()
insights.append("\nCategory distribution:")
for category, count in category_dist.items():
percentage = (count/total_students) * 100
insights.append(f"{category}: {count:,} students ({percentage:.1f}%)")
# Performance insights
if 'Percentile_obtained_in_entrance' in data.columns:
avg_percentile = data['Percentile_obtained_in_entrance'].mean()
max_percentile = data['Percentile_obtained_in_entrance'].max()
min_percentile = data['Percentile_obtained_in_entrance'].min()
insights.append("\nEntrance Exam Performance:")
insights.append(f"Average Percentile: {avg_percentile:.2f}")
insights.append(f"Highest Percentile: {max_percentile:.2f}")
insights.append(f"Lowest Percentile: {min_percentile:.2f}")
# Board percentage insights
if 'Board_Percentage' in data.columns:
avg_board = data['Board_Percentage'].mean()
max_board = data['Board_Percentage'].max()
min_board = data['Board_Percentage'].min()
insights.append("\nBoard Exam Performance:")
insights.append(f"Average Percentage: {avg_board:.2f}%")
insights.append(f"Highest Percentage: {max_board:.2f}%")
insights.append(f"Lowest Percentage: {min_board:.2f}%")
# Category-wise performance
if all(col in data.columns for col in ['Category', 'Percentile_obtained_in_entrance']):
insights.append("\nCategory-wise Average Entrance Percentile:")
cat_perf = data.groupby('Category')['Percentile_obtained_in_entrance'].mean()
for category, avg in cat_perf.items():
insights.append(f"{category}: {avg:.2f}")
return insights
@app.route('/analyze_scholarship_questionnaire', methods=['POST'])
def analyze_scholarship_questionnaire():
"""Analyze scholarship data with questionnaire responses."""
try:
if 'file' not in request.files:
return render_template('index.html', error='Please upload the data file again')
file = request.files['file']
if file.filename == '':
return render_template('index.html', error='No file selected')
data = pd.read_csv(file, encoding='utf-8')
# Generate fresh plots and insights for this request only
plots = generate_scholarship_plots(data)
insights = analyze_performance(data)
swot = perform_scholarship_swot(data)
# Add questionnaire data to SWOT analysis
mentorship_programs = request.form['mentorship_programs'] == 'yes'
career_guidance = request.form['career_guidance'] == 'yes'
academic_support = request.form['academic_support'] == 'yes'
graduation_rate = float(request.form['graduation_rate'])
application_success_rate = float(request.form['application_success_rate'])
funding_sustainability = int(request.form['funding_sustainability'])
# Enhanced SWOT Analysis based on questionnaire
if mentorship_programs:
swot['strengths'].append("Active mentorship program for scholarship recipients")
else:
swot['opportunities'].append("Implement mentorship program for better student support")
if career_guidance:
swot['strengths'].append("Career guidance services available")
else:
swot['opportunities'].append("Introduce career development services")
if academic_support:
swot['strengths'].append("Academic support system in place")
else:
swot['weaknesses'].append("Lack of academic support services")
if graduation_rate >= 85:
swot['strengths'].append(f"High graduation rate ({graduation_rate:.1f}%)")
elif graduation_rate < 70:
swot['weaknesses'].append(f"Low graduation rate ({graduation_rate:.1f}%)")
if application_success_rate >= 75:
swot['strengths'].append(f"High application success rate ({application_success_rate:.1f}%)")
elif application_success_rate < 50:
swot['weaknesses'].append(f"Low application success rate ({application_success_rate:.1f}%)")
if funding_sustainability >= 5:
swot['strengths'].append(f"Secure funding for {funding_sustainability} years")
else:
swot['threats'].append("Limited long-term funding security")
return render_template('index.html',
plots=plots,
insights=insights,
swot=swot,
show_scholarship_results=True,
hide_questionnaire=True
)
except Exception as e:
return render_template('index.html', error=f'An error occurred: {str(e)}')
@app.route('/analyze_diversity_questionnaire', methods=['POST'])
def analyze_diversity_questionnaire():
"""Analyze diversity data with questionnaire responses."""
try:
# Get file data
if 'file' not in request.files:
return render_template('index.html', error='Please upload the data file again')
file = request.files['file']
if file.filename == '':
return render_template('index.html', error='No file selected')
data = pd.read_csv(file, encoding='utf-8')
# Get form data
students_with_disabilities = int(request.form['students_with_disabilities'])
first_gen_students = int(request.form['first_gen_students'])
international_students = int(request.form['international_students'])
# Academic Environment
student_faculty_ratio = float(request.form['student_faculty_ratio'])
avg_class_size = float(request.form['avg_class_size'])
research_active_faculty = float(request.form['research_active_faculty'])
# Student Success Metrics
avg_age = float(request.form['avg_age'])
retention_rate = float(request.form['retention_rate'])
graduation_rate = float(request.form['graduation_rate'])
# Support Services
counseling_services = request.form['counseling_services'] == 'yes'
career_services = request.form['career_services'] == 'yes'
tutoring_services = request.form['tutoring_services'] == 'yes'
# Campus Life
housing_capacity = float(request.form['housing_capacity'])
student_organizations = int(request.form['student_organizations'])
athletic_programs = int(request.form['athletic_programs'])
# Calculate total students from the data
total_students = data['Number_of_Students'].sum() if 'Number_of_Students' in data.columns else 0
if total_students == 0:
# If we can't get total students from file, estimate from the form data
total_students = max(
students_with_disabilities + first_gen_students + international_students,
int(avg_class_size * student_faculty_ratio) # Estimate from class size and ratio
)
# Generate fresh plots for this request only
plots = generate_diversity_plots(data)
# Generate fresh SWOT analysis
swot = {
'strengths': [],
'weaknesses': [],
'opportunities': [],
'threats': []
}
# Enhanced SWOT Analysis
if counseling_services and career_services and tutoring_services:
swot['strengths'].append("Comprehensive student support services")
else:
swot['weaknesses'].append("Gaps in student support services")
if housing_capacity >= 60:
swot['strengths'].append(f"Strong residential community ({housing_capacity:.1f}% capacity)")
elif housing_capacity < 30:
swot['weaknesses'].append("Limited residential facilities")
if student_organizations > 50:
swot['strengths'].append(f"Vibrant campus life with {student_organizations} organizations")
else:
swot['opportunities'].append("Room for more student organizations")
if research_active_faculty >= 70:
swot['strengths'].append(f"Strong research faculty ({research_active_faculty:.1f}%)")
elif research_active_faculty < 40:
swot['weaknesses'].append("Limited research activity")
if avg_class_size <= 25:
swot['strengths'].append(f"Small class sizes (avg: {avg_class_size:.1f})")
elif avg_class_size > 40:
swot['weaknesses'].append("Large class sizes")
# Calculate and analyze percentages
disability_percentage = (students_with_disabilities / total_students * 100)
first_gen_percentage = (first_gen_students / total_students * 100)
international_percentage = (international_students / total_students * 100)
if disability_percentage >= 5:
swot['strengths'].append(f"Good support for students with disabilities ({disability_percentage:.1f}%)")
else:
swot['opportunities'].append("Enhance accessibility and support services")
if first_gen_percentage >= 30:
swot['strengths'].append(f"Strong first-generation student representation ({first_gen_percentage:.1f}%)")
else:
swot['opportunities'].append("Expand first-generation student outreach")
if international_percentage >= 10:
swot['strengths'].append(f"Good international diversity ({international_percentage:.1f}%)")
else:
swot['opportunities'].append("Increase international student recruitment")
return render_template('index.html',
plots=plots,
swot=swot,
show_results=True
)
except Exception as e:
return render_template('index.html', error=f'An error occurred: {str(e)}')
# Add new route for combined analysis
@app.route('/analyze_combined', methods=['POST'])
def analyze_combined():
"""Handle combined analysis of scholarship and diversity data."""
try:
# Initialize empty plots and SWOT dictionaries
scholarship_plots = {}
diversity_plots = {}
scholarship_swot = {'strengths': [], 'weaknesses': [], 'opportunities': [], 'threats': []}
diversity_swot = {'strengths': [], 'weaknesses': [], 'opportunities': [], 'threats': []}
combined_insights = {'scholarship': {}, 'diversity': []}
total_students = 0
# Check if this is a PDF download request
is_pdf_request = request.args.get('format') == 'pdf'
# Get scholarship file data
if not is_pdf_request:
# Normal form submission
scholarship_file = request.files['scholarship_file']
diversity_file = request.files['diversity_file']
if not scholarship_file or not diversity_file:
return render_template('index.html', error='Please upload both files')
try:
# Read and validate both files
scholarship_data = pd.read_csv(scholarship_file, encoding='utf-8')
diversity_data = pd.read_csv(diversity_file, encoding='utf-8')
validate_data(scholarship_data) # Reuse existing validation
# Generate plots and analyses
scholarship_plots = generate_scholarship_plots(scholarship_data)
diversity_plots = generate_diversity_plots(diversity_data)
scholarship_swot = perform_scholarship_swot(scholarship_data)
diversity_swot = perform_swot_analysis(diversity_data)
combined_insights = {
'scholarship': analyze_performance(scholarship_data),
'diversity': generate_diversity_insights(diversity_data)
}
# Calculate total students from diversity data
total_students = len(diversity_data)
# Store data in session
session['total_students'] = total_students
session['scholarship_swot'] = scholarship_swot
session['diversity_swot'] = diversity_swot
except Exception as e:
return render_template('index.html', error=f'Error processing files: {str(e)}')
# Get form data for both questionnaires
scholarship_metrics = {
'graduation_rate': float(request.form['scholarship_graduation_rate']),
'application_success_rate': float(request.form['application_success_rate']),
'funding_sustainability': int(request.form['funding_sustainability']),
'mentorship_programs': request.form.get('mentorship_programs'),
'career_guidance': request.form.get('career_guidance'),
'academic_support': request.form.get('academic_support')
}
diversity_metrics = {
'total_students': total_students,
'students_with_disabilities': int(request.form['students_with_disabilities']),
'first_gen_students': int(request.form['first_gen_students']),
'international_students': int(request.form['international_students']),
'student_faculty_ratio': float(request.form['student_faculty_ratio']),
'research_active_faculty': float(request.form['research_active_faculty'])
}
scholarship_score, scholarship_explanations = calculate_scholarship_score(
scholarship_data, scholarship_metrics)
diversity_score, diversity_explanations = calculate_diversity_score(
diversity_data, diversity_metrics)
# Calculate overall score (weighted average)
overall_score = (scholarship_score + diversity_score) / 2
return render_template('index.html',
show_combined_results=True,
scholarship_plots=scholarship_plots,
diversity_plots=diversity_plots,
scholarship_swot=scholarship_swot,
diversity_swot=diversity_swot,
combined_insights=combined_insights,
hide_questionnaire=True,
total_students=total_students,
graduation_rate=scholarship_metrics['graduation_rate'],
application_success_rate=scholarship_metrics['application_success_rate'],
international_students=diversity_metrics['international_students'],
student_faculty_ratio=diversity_metrics['student_faculty_ratio'],
research_active_faculty=diversity_metrics['research_active_faculty'],
first_gen_students=diversity_metrics['first_gen_students'],
students_with_disabilities=diversity_metrics['students_with_disabilities'],
# Add score data
scholarship_score=scholarship_score,
scholarship_explanations=scholarship_explanations,
diversity_score=diversity_score,
diversity_explanations=diversity_explanations,
overall_score=overall_score
)
except Exception as e:
return render_template('index.html', error=f'An error occurred: {str(e)}')
def generate_pdf_report(data):
"""Generate and return a PDF report."""
try:
# Get the rendered HTML content
html_content = render_template('pdf_report.html', **data)
# Create a temporary file to store the PDF
with tempfile.NamedTemporaryFile(suffix='.pdf', delete=False) as tmp:
# Generate PDF from HTML
HTML(string=html_content).write_pdf(tmp.name)
# Send the PDF file
return send_file(
tmp.name,
mimetype='application/pdf',
as_attachment=True,
download_name='educational_data_analysis_report.pdf'
)
except Exception as e:
return render_template('index.html', error=f'Error generating PDF: {str(e)}')
@app.route('/download_report')
def download_report():
"""Generate and download PDF report."""
try:
# Get the rendered HTML content
html_content = render_template('pdf_report.html',
timestamp=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
total_students=session.get('total_students', 0),
graduation_rate=session.get('graduation_rate', 0),
application_success_rate=session.get('application_success_rate', 0),
international_students=session.get('international_students', 0),
student_faculty_ratio=session.get('student_faculty_ratio', 0),
research_active_faculty=session.get('research_active_faculty', 0),
first_gen_students=session.get('first_gen_students', 0),
students_with_disabilities=session.get('students_with_disabilities', 0),
scholarship_swot=session.get('scholarship_swot', {'strengths': [], 'weaknesses': [], 'opportunities': [], 'threats': []}),
diversity_swot=session.get('diversity_swot', {'strengths': [], 'weaknesses': [], 'opportunities': [], 'threats': []})
)
# Create a temporary file to store the PDF
with tempfile.NamedTemporaryFile(suffix='.pdf', delete=False) as tmp:
# Generate PDF from HTML
HTML(string=html_content).write_pdf(tmp.name)
# Send the PDF file
return send_file(
tmp.name,
mimetype='application/pdf',
as_attachment=True,
download_name='educational_data_analysis_report.pdf'
)
except Exception as e:
return render_template('index.html', error=f'Error generating PDF: {str(e)}')
def calculate_scholarship_score(data: pd.DataFrame, metrics: Dict) -> Tuple[int, List[str]]:
"""
Calculate scholarship score out of 100 based on various metrics.
Returns tuple of (score, explanations)
"""
score = 0
explanations = []
# Coverage and Utilization (30 points)
coverage_rate = (data['Number of Beneficiaries'].sum() / data['Total Students Eligible'].sum()) * 100
if coverage_rate >= 75:
score += 30
explanations.append("Excellent coverage rate (30/30)")
elif coverage_rate >= 50:
score += 20
explanations.append("Good coverage rate (20/30)")
elif coverage_rate >= 25:
score += 10
explanations.append("Fair coverage rate (10/30)")
else:
explanations.append("Poor coverage rate (0/30)")
# Program Success (25 points)
grad_rate = float(metrics.get('graduation_rate', 0))
app_success = float(metrics.get('application_success_rate', 0))
# Graduation rate (15 points)
if grad_rate >= 90:
score += 15
explanations.append("Outstanding graduation rate (15/15)")
elif grad_rate >= 80:
score += 10
explanations.append("Good graduation rate (10/15)")
elif grad_rate >= 70:
score += 5
explanations.append("Fair graduation rate (5/15)")
else:
explanations.append("Needs improvement in graduation rate (0/15)")
# Application success (10 points)
if app_success >= 80:
score += 10
explanations.append("High application success rate (10/10)")
elif app_success >= 60:
score += 5
explanations.append("Moderate application success rate (5/10)")
else:
explanations.append("Low application success rate (0/10)")
# Support Services (25 points)
support_score = 0
if metrics.get('mentorship_programs') == 'yes':
support_score += 8
if metrics.get('career_guidance') == 'yes':
support_score += 8
if metrics.get('academic_support') == 'yes':
support_score += 9
score += support_score
explanations.append(f"Support services score ({support_score}/25)")
# Sustainability (20 points)
funding_years = int(metrics.get('funding_sustainability', 0))
if funding_years >= 5:
score += 20
explanations.append("Strong funding sustainability (20/20)")
elif funding_years >= 3:
score += 15
explanations.append("Good funding sustainability (15/20)")
elif funding_years >= 1:
score += 10
explanations.append("Limited funding sustainability (10/20)")
else:
explanations.append("Funding sustainability concerns (0/20)")
return score, explanations
def calculate_diversity_score(data: pd.DataFrame, metrics: Dict) -> Tuple[int, List[str]]:
"""
Calculate diversity score out of 100 based on various metrics.
Returns tuple of (score, explanations)
"""
score = 0
explanations = []
total_students = float(metrics.get('total_students', 0))
if total_students == 0:
total_students = len(data)
# Gender Diversity (25 points)
if 'Gender' in data.columns:
gender_dist = data['Gender'].value_counts(normalize=True)
min_gender_ratio = gender_dist.min()
if min_gender_ratio >= 0.4:
score += 25
explanations.append("Excellent gender balance (25/25)")
elif min_gender_ratio >= 0.3:
score += 20
explanations.append("Good gender balance (20/25)")
elif min_gender_ratio >= 0.2:
score += 15
explanations.append("Fair gender balance (15/25)")
else:
explanations.append("Gender balance needs improvement (0/25)")
# Inclusive Access (25 points)
disabilities_pct = (float(metrics.get('students_with_disabilities', 0)) / total_students) * 100
if disabilities_pct >= 5:
score += 15
explanations.append("Strong accessibility support (15/15)")
elif disabilities_pct >= 3:
score += 10
explanations.append("Good accessibility support (10/15)")
else:
explanations.append("Accessibility support needs improvement (0/15)")
first_gen_pct = (float(metrics.get('first_gen_students', 0)) / total_students) * 100
if first_gen_pct >= 30:
score += 10
explanations.append("Strong first-generation representation (10/10)")
elif first_gen_pct >= 20:
score += 5
explanations.append("Moderate first-generation representation (5/10)")
else:
explanations.append("First-generation representation needs improvement (0/10)")
# Academic Environment (25 points)
student_faculty = float(metrics.get('student_faculty_ratio', 0))
if student_faculty > 0 and student_faculty <= 15:
score += 15
explanations.append("Excellent student-faculty ratio (15/15)")
elif student_faculty <= 20:
score += 10
explanations.append("Good student-faculty ratio (10/15)")
elif student_faculty <= 25:
score += 5
explanations.append("Fair student-faculty ratio (5/15)")
else:
explanations.append("Student-faculty ratio needs improvement (0/15)")
research_faculty = float(metrics.get('research_active_faculty', 0))
if research_faculty >= 70:
score += 10
explanations.append("Strong research activity (10/10)")
elif research_faculty >= 50:
score += 5
explanations.append("Moderate research activity (5/10)")
else:
explanations.append("Research activity needs improvement (0/10)")
# International Diversity (25 points)
intl_pct = (float(metrics.get('international_students', 0)) / total_students) * 100
if intl_pct >= 15:
score += 25
explanations.append("Excellent international diversity (25/25)")
elif intl_pct >= 10:
score += 20
explanations.append("Good international diversity (20/25)")
elif intl_pct >= 5:
score += 15
explanations.append("Fair international diversity (15/25)")
else:
explanations.append("International diversity needs improvement (0/25)")
return score, explanations
if __name__ == '__main__':
app.run(host='0.0.0.0', port=7860)
#create a new tab as questineier for scholorship and for diversity(diversity) in which we can do swot analysis |